Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Функции и характеристики сетевых адаптеров



Сетевой адаптер (Network Interface Card (или Controller), NIC) вместе со своим драйвером реализует второй, канальный уровень модели открытых систем (OSI) в конечном узле сети — компьютере. Более точно, в сетевой операционной системе пара адаптер и драйвер выполняет только функции физического и MAC-уровней, в то время как LLC-уровень обычно реализуется модулем операционной системы, единым для всех драйверов и сетевых адаптеров. Собственно так оно и должно быть в соответствии с моделью стека протоколов IEEE 802. Например, в ОС Windows NT уровень LLC реализуется в модуле NDIS, общем для всех драйверов сетевых адаптеров, независимо от того, какую технологию поддерживает драйвер.

Сетевой адаптер совместно с драйвером выполняют две операции: передачу и прием кадра. Передача кадра из компьютера в кабель состоит из перечисленных ниже этапов (некоторые могут отсутствовать, в зависимости от принятых методов кодирования):

Прием кадра данных LLC через межуровневый интерфейс вместе с адресной информацией MAC-уровня. Обычно взаимодействие между протоколами внутри компьютера происходит через буферы, расположенные в оперативной памяти. Данные для передачи в сеть помещаются в эти буферы протоколами верхних уровней, которые извлекают их из дисковой памяти либо из файлового кэша с помощью подсистемы ввода/вывода операционной системы.

Оформление кадра данных MAC-уровня, в который инкапсулируется кадр LLC (с отброшенными флагами 01111110). Заполнение адресов назначения и источника, вычисление контрольной суммы.

Формирование символов кодов при использовании избыточных кодов типа 4В/5В. Скремблирование кодов для получения более равномерного спектра сигналов. Этот этап используется не во всех протоколах — например, технология Ethernet 10 Мбит/с обходится без него.

Выдача сигналов в кабель в соответствии с принятым линейным кодом — манчестерским, NRZI, MLT-3 и т. п.

Прием кадра из кабеля в компьютер включает следующие действия:

Прием из кабеля сигналов, кодирующих битовый поток.

Выделение сигналов на фоне шума. Эту операцию могут выполнять различные специализированные микросхемы или сигнальные процессоры DSP. В результате в приемнике адаптера образуется некоторая битовая последовательность, с большой степенью вероятности совпадающая с той, которая была послана передатчиком.

Если данные перед отправкой в кабель подвергались скремблированию, то они пропускаются через дескремблер, после чего в адаптере восстанавливаются символы кода, посланные передатчиком.

Проверка контрольной суммы кадра. Если она неверна, то кадр отбрасывается, а через межуровневый интерфейс наверх, протоколу LLC передается соответствующий код ошибки. Если контрольная сумма верна, то из MAC-кадра извлекается кадр LLC и передается через межуровневый интерфейс наверх, протоколу LLC. Кадр LLC помещается в буфер оперативной памяти.

Распределение обязанностей между сетевым адаптером и его драйвером стандартами не определяется, поэтому каждый производитель решает этот вопрос самостоятельно. Обычно сетевые адаптеры делятся на адаптеры для клиентских компьютеров и адаптеры для серверов.

В адаптерах для клиентских компьютеров значительная часть работы перекладывается на драйвер, тем самым адаптер оказывается проще и дешевле. Недостатком такого подхода является высокая степень загрузки центрального процессора компьютера рутинными работами по передаче кадров из оперативной памяти компьютера в сеть. Центральный процессор вынужден заниматься этой работой вместо выполнения прикладных задач пользователя.

Поэтому адаптеры, предназначенные для серверов, обычно снабжаются собственными процессорами, которые самостоятельно выполняют большую часть работы по передаче кадров из оперативной памяти в сеть и в обратном направлении. Примером такого адаптера может служить сетевой адаптер SMC EtherPower со встроенным процессором Intel i960.

В зависимости от того, какой протокол реализует адаптер, адаптеры делятся на Ethernet-адаптеры, Token Ring-адаптеры, FDDI-адаптеры и т. д. Так как протокол Fast Ethernet позволяет за счет процедуры автопереговоров автоматически выбрать скорость работы сетевого адаптера в зависимости от возможностей концентратора, то многие адаптеры Ethernet сегодня поддерживают две скорости работы и имеют в своем названии приставку 10/100. Это свойство некоторые производители называют авточувствительностью.

Сетевой адаптер перед установкой в компьютер необходимо конфигурировать. При конфигурировании адаптера обычно задаются номер прерывания IRQ, используемого адаптером, номер канала прямого доступа к памяти DMA (если адаптер поддерживает режим DMA) и базовый адрес портов ввода/вывода.

Если сетевой адаптер, аппаратура компьютера и операционная система поддерживают стандарт Plug-and-Play, то конфигурирование адаптера и его драйвера осуществляется автоматически. В противном случае нужно сначала сконфигурировать сетевой адаптер, а затем повторить параметры его конфигурации для драйвера. В общем случае, детали процедуры конфигурирования сетевого адаптера и его драйвера во многом зависят от производителя адаптера, а также от возможностей шины, для которой разработан адаптер.

Классификация сетевых адаптеров

В качестве примера классификации адаптеров используем подход фирмы 3Com. Фирма 3Com считает, что сетевые адаптеры Ethernet прошли в своем развитии три поколения.

Первое поколение

Адаптеры первого поколения были выполнены на дискретных логических микросхемах, в результате чего обладали низкой надежностью. Они имели буферную память только на один кадр, что приводило к низкой производительности адаптера, так как все кадры передавались из компьютера в сеть или из сети в компьютер последовательно. Кроме этого, задание конфигурации адаптера первого поколения происходило вручную, с помощью перемычек. Для каждого типа адаптеров использовался свой драйвер, причем интерфейс между драйвером и сетевой операционной системой не был стандартизирован.

Второе поколение

В сетевых адаптерах второго поколения для повышения производительности стали применять метод многокадровой буферизации. При этом следующий кадр загружается из памяти компьютера в буфер адаптера одновременно с передачей предыдущего кадра в сеть. В режиме приема, после того как адаптер полностью принял один кадр, он может начать передавать этот кадр из буфера в память компьютера одновременно с приемом другого кадра из сети.

В сетевых адаптерах второго поколения широко используются микросхемы с высокой степенью интеграции, что повышает надежность адаптеров. Кроме того, драйверы этих адаптеров основаны на стандартных спецификациях. Адаптеры второго поколении обычно поставляются с драйверами, работающими как в стандарте NDIS (спецификация интерфейса сетевого драйвера), разработанном фирмами 3Com и Microsoft и одобренном IBM, так и в стандарте ODI (интерфейс открытого драйвера), разработанном фирмой Novell.

Третье поколение

В сетевых адаптерах третьего поколения (к ним фирма 3Com относит свои адаптеры семейства EtherLink III) осуществляется конвейерная схема обработки кадров. Она заключается в том, что процессы приема кадра из оперативной памяти компьютера и передачи его в сеть совмещаются во времени. Таким образом, после приема нескольких первых байт кадра начинается их передача. Это существенно (на 25—55 %) повышает производительность цепочки «оперативная память — адаптер — физический канал — адаптер — оперативная память». Такая схема очень чувствительна к порогу начала передачи, то есть к количеству байт кадра, которое загружается в буфер адаптера перед началом передачи в сеть. Сетевой адаптер третьего поколения осуществляет самонастройку этого параметра путем анализа рабочей среды, а также методом расчета, без участия администратора сети. Самонастройка обеспечивает максимально возможную производительность для конкретного сочетания производительности внутренней шины компьютера, его системы прерываний и системы прямого доступа к памяти.

Адаптеры третьего поколения базируются на специализированных интегральных схемах (ASIC), что повышает производительность и надежность адаптера при одновременном снижении его стоимости. Компания 3Com назвала свою технологию конвейерной обработки кадров Parallel Tasking, другие компании также реализовали похожие схемы в своих адаптерах. Повышение производительности канала «адаптер-память» очень важно для повышения производительности сети в целом, так как производительность сложного маршрута обработки кадров, включающего, например, концентраторы, коммутаторы, маршрутизаторы, глобальные каналы связи и т. п., всегда определяется производительностью самого медленного элемента этого маршрута. Следовательно, если сетевой адаптер сервера или клиентского компьютера работает медленно, никакие быстрые коммутаторы не смогут повысить скорость работы сети.

Четвёртое поколение

Выпускаемые сегодня сетевые адаптеры можно отнести к четвертому поколению. В эти адаптеры обязательно входит ASIC, выполняющая функции MAC-уровня (англ. MAC-PHY), скорость развита до 1 Гбит/сек, а также есть большое количество высокоуровневых функций. В набор таких функций может входить поддержка агента удаленного мониторинга RMON, схема приоритезации кадров, функции дистанционного управления компьютером и т. п. В серверных вариантах адаптеров почти обязательно наличие мощного процессора, разгружающего центральный процессор. Примером сетевого адаптера четвертого поколения может служить адаптер компании 3Com Fast EtherLink XL 10/100.

Повторитель

Повторитель (репи́ тер, от англ. repeater) — сетевое оборудование, предназначенное для увеличения расстояния сетевого соединения путём повторения электрического сигнала «один в один». Бывают однопортовые повторители и многопортовые. В терминах модели OSI работает на физическом уровне.

Одной из первых задач, которая стоит перед любой технологией транспортировки данных, является возможность их передачи на максимально большое расстояние. Физическая среда накладывает на этот процесс своё ограничение — рано или поздно мощность сигнала падает, и приём становится невозможным. Но ещё большее значение имеет то, что искажается «форма сигнала» — закономерность, в соответствии с которой мгновенное значение уровня сигнала изменяется во времени. Это происходит в результате того, что провода, по которым передаётся сигнал, имеют собственную ёмкость и индуктивность. Электрические и магнитные поля одного проводника наводят ЭДС в других проводниках (длинная линия).

Привычное для аналоговых систем усиление не годится для высокочастотных цифровых сигналов. Разумеется, при его использовании какой-то небольшой эффект может быть достигнут, но с увеличением расстояния искажения быстро нарушат целостность данных.

Проблема не нова, и в таких ситуациях применяют не усиление, а повторение сигнала. При этом устройство на входе должно принимать сигнал, далее распознавать его первоначальный вид, и генерировать на выходе его точную копию. Такая схема в теории может передавать данные на сколь угодно большие расстояния (если не учитывать особенности разделения физической среды в Ethernet).

Первоначально в Ethernet использовался коаксиальный кабель с топологией «шина», и нужно было соединять между собой всего несколько протяжённых сегментов. Для этого обычно использовались повторители (repeater), имевшие два порта. Несколько позже появились многопортовые устройства, называемые концентраторами (concentrator). Их физический смысл был точно такой же, но восстановленный сигнал транслировался на все активные порты, кроме того, с которого пришёл сигнал.

С появлением протокола 10baseT (витой пары) для избежания терминологической путаницы многопортовые повторители для витой пары стали называться сетевыми концентраторами (хабами), а коаксиальные — повторителями (репитерами), по крайней мере, в русскоязычной литературе. Эти названия хорошо прижились и используются в настоящее время очень широко.

Сетевой концентратор

Сетевой концентратор или хаб (от англ. hub — центр) — устройство для объединения компьютеров в сеть Ethernet c применением кабельной инфраструктуры типа витая пара. В настоящее время вытеснены сетевыми коммутаторами.

Сетевые концентраторы также могли иметь разъемы для подключения к существующим сетям на базе толстого или тонкого коаксиального кабеля.Содержание

4-портовый сетевой концентратор

Принцип работы

Концентратор работает на физическом уровне сетевой модели OSI, ретранслируя входящий сигнал с одного из портов в сигнал на все остальные (подключенные) порты, реализуя, таким образом, свойственную Ethernet топологию общая шина, c разделением пропускной способности сети между всеми устройствами и работой в режиме полудуплекса. Коллизии (т.е. попытка двух и более устройств начать передачу одновременно) обрабатываются аналогично сети Ethernet на других носителях - устройства самостоятельно прекращают передачу и возобновляют попытку через случайный промежуток времени, говоря современным языком, концентратор объединяет устройства в одном домене коллизий.

Сетевой концентратор также обеспечивает бесперебойную работу сети при отключении устройства от одного из портов или повреждении кабеля, в отличие, например, от сети на коаксиальном кабеле, которая в таком случае прекращает работу целиком.

Преимущества и недостатки Этот раздел не завершён.

Вы поможете проекту, исправив и дополнив его.

Коммутаторы

Появившиеся позже интеллектуальные устройства, работающие на 2 (канальном) уровне по модели OSI (в отличие от концентраторов, работающих только на 1 (физическом) уровне) - коммутаторы, способные обеспечивать независимую и выборочную передачу кадров Ethernet между портами за счет вскрытия заголовков кадров и пересылки их по нужным портам (в отличие от концентраторов, пересылающих данные во все порты), работу в разных режимах и с различными скоростями, сначала использовались для разгрузки и оптимизации больших Ethernet-сетей, а затем полностью вытеснили концентраторы.


Поделиться:



Популярное:

  1. III. Основные функции и полномочия Управления
  2. PR – отношения с общественностью. Цели, задачи, функции, методы
  3. Абсолютные и относительные ссылки. Стандартные формулы и функции. Логические функции
  4. Автоматизированная система мониторинга вычислительной среды и обнаружения сетевых атак.
  5. Алгоритм нахождения производной сложной функции
  6. Арифметические операции и стандартные функции
  7. Базовые функции выборки данных
  8. Банковская система и предложение денег. Центральный банк, его функции. Коммерческие банки. Создание денег банковской системой. Банковский мультипликатор. Денежная база.
  9. БАРЬЕРНЫЕ ФУНКЦИИ ТКАНЕЙ И ФАКТОРЫ ЕСТЕСТВЕННОЙ ЗАЩИТЫ ОРГАНИЗМА
  10. Белки-каналы, их строение и функции
  11. Вегетативные органы. Корень. Функции корня. Виды корней. Типы корневых систем.
  12. Ветеринарный надзор и его функции при транспортировке животных.


Последнее изменение этой страницы: 2016-06-05; Просмотров: 1024; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.018 с.)
Главная | Случайная страница | Обратная связь