Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Естественные элементы токоотводов



Следующие конструктивные элементы зданий могут считаться есте­ственными токоотводами:

а) металлические конструкции при условии, что:

электрическая непрерывность между разными элементами является долговечной. Они имеют не меньшие размеры, чем требуются для специально пре­дусмотренных токоотводов; металлические конструкции могут иметь изоляционное покрытие.

б) металлический каркас здания или сооружения;

в) соединенная между собой стальная арматура здания или соору­жения;

г) части фасада, профилированные элементы и опорные металличе­ские конструкции фасада при условии, что:

-их размеры соответствуют указаниям, относящимся к токоотводам, а их толщина составляет не менее 0, 5 мм;

-металлическая арматура железобетонных строений считается обес­печивающей электрическую непрерывность, если она удовлетворяет следующим условиям: примерно 50 % соединений вертикальных и горизонтальных стержней выполнены сваркой или имеют жесткую связь (болтовое крепление, вязка проволокой); электрическая непрерывность обеспечена между стальной арматурой различных заранее заготовленных бетонных блоков и арматурой бетонных блоков, подготовленных на месте.

В прокладке горизонтальных поясов нет необходимости, если метал­лические каркасы здания или стальная арматура железобетона исполь­зуются как токоотводы.

 


2.5 Типы и устройство молниеотводов

Молниеотвод — устройство, устанавливаемое на зданиях и сооружениях и служащее для защиты от удара молнии. В быту также употребляется некорректное, но более благозвучное «громоотвод».

Во время грозы появляются большие индуцированные заряды, и у поверхности Земли возникает сильное электрическое поле. Напряжённость поля особенно велика возле острых проводников, и поэтому на конце молниеотвода зажигается коронный разряд.

Вследствие этого индуцированные заряды не могут накапливаться на здании и молнии не происходит. В тех же случаях, когда молния всё же возникает (такие случаи очень редки), она ударяет в молниеотвод и заряды уходят в Землю, не причиняя разрушений.

Здания и сооружения защищают от прямых ударов молнии различными по конструкции молниеотводами. Но любой из молниеотводов включает в себя четыре основные части: молниеприемник, непосредственно воспринимающий удар молнии; токоотвод, соединяющий молниеприемник с заземлителем; заземлитель, через который ток молнии стекает в землю; несущую часть (опору или опоры), предназначенную для закрепления молниеприемника и токоотвода.

В зависимости от конструкции молниеприемника различают молниеотводы:

- стержневые

- тросовые

- сетчатые

-комбинированные.

По числу совместно действующих молниеприемников их делят на:

- одиночные

- двойные

-многократные.

Лист
Кроме того, по месту расположения молниеотводы бывают:

- отдельно стоящие

- изолированные

- не изолированные

Защитное действие молниеотвода основано на свойстве молнии поражать наиболее высокие и хорошо заземленные металлические сооружения. Благодаря этому свойству более низкое по высоте защищаемое здание практически не поражается молнией, если оно входит в зону защиты молниеотвода. Зоной защиты молниеотвода называется часть пространства, примыкающая к нему и с достаточной степенью надежности (не менее 95 %) обеспечивающая защиту сооружений от прямых ударов молнии.

Наиболее часто для защиты зданий и сооружений применяют стержневые молниеотводы.

Лист
Молниеприемник стержневого молниеотвода представляет собой вертикально расположенный стальной стержень любого профиля длиной 2... 15 м и площадью поперечного сечения не менее 100 мм2, укрепленный на опоре, расположенной, как правило, не ближе 5 м от защищаемого объекта. Молниеприемник соединяют с заземлителем токоотводом, выполненным из стальной проволоки диаметром не менее 6 мм, а в случае прокладки токоотвода в земле — не менее 10 мм. При устройстве молниеприемников непосредственно на крыше здания выполняют как минимум два токоотвода, а при ширине крыши более 12м — четыре. Если длина защищаемого объекта более 20 м, то на каждые последующие 20 м длины требуется устанавливать дополнительные токоотводы; при ширине здания до 12м - на обеих сторонах здания. Все соединения (молниеприемник - токоотвод, токоотвод -заземлитель) следует сваривать. В качестве стержневых молниеотводов необходимо максимально использовать существующие вблизи защищаемого объекта высокие сооружения: водонапорные башни, вытяжные трубы и т. п. Деревья, растущие на расстоянии не более 5 м от зданий III...V степеней огнестойкости, также можно использовать в качестве опоры молниеотвода, если на стене здания напротив дерева на всю высоту стены проложить токоотвод, приварив его к заземлителю молниеотвода.

Тросовые молниеотводы чаще всего применяют для защиты зданий большой длины и высоковольтных линий. Эти молниеотводы изготовляют в виде горизонтальных тросов, закрепленных на опорах, по каждой из которых прокладывают токоотвод. Молниеприемники тросовых молниеотводов выполняют из стального многопроволочного оцинкованного троса сечением не менее 35 мм2. Следует отметить, что стержневые и тросовые молниеотводы обеспечивают одинаковую степень надежности защиты.

В качестве молниеприемников можно использовать металлическую крышу, заземленную по углам и по периметру не реже чем через каждые 25 м, или наложенную на неметаллическую крышу сетку из стальной проволоки диаметром не менее 6 мм, имеющую площадь ячеек до 150мм2, с узлами, закрепленными сваркой, и заземленную так же, как металлическая крыша. К сетке или токопроводящей кровле присоединяют металлические колпаки над дымовыми и вентиляционными трубами, а в случае отсутствия колпаков — специально наложенные на трубы проволочные кольца [4].

 

Заземлители МЗС

МЗС нужен, чтобы отвести в землю ток молнии после ее удара в молниеприемник. Но для этой цели нет нужды в специальном контуре заземления. Току молнии некуда деваться. Он безо всякого заземлителя растечется в грунте после удара молнии в поверхность земли или, например, в дерево.

Лист
Может быть при низком сопротивлении заземления молниеотвод эффективнее притягивает молнию? Теория и эксперимент дают здесь отрицательный ответ. Для притяжения молнии важен рост плазменного канала от вершины объекта, так называемого встречного лидера. Развитие лидера сопровождается током через сопротивление заземления молниеотвода и на нем теряется напряжение. Однако потеря очень мала, потому что этот ток вряд ли превышает 10 – 20 А. Даже на сопротивлении заземления Rз = 1000 Ом потеря напряжения составит 10 – 20 кВ – величина пренебрежимо малая по сравнению с потенциалом 20 – 100 кВ, который несет к земле канал молнии. Итак, рассмотренные причины отпадают. Остается одно – безопасность процесса растекания тока молнии в земле. При ударе в молниеотвод ток молнии может превысить 100 кА. Даже в случае качественного заземления молниеотвода с сопротивлением заземления Rз ~ 10 Ом речь пойдет о напряжении порядка 1000 кВ. Столь сильный подброс напряжения становится причиной больших напряжений. Прикосновения к металлоконструкциям молниеотвода, на достаточно большом расстоянии от молниеотвода возникают опасные шаговые напряжения, между зеземлителем и подземными коммуникациями (например, кабелями цепей управления) действуют высокие напряжения, достаточные для искрового пробоя грунта и ввода в эти коммуникации значительной доли тока молнии. При очень высоком напряжении возможен даже искровой пробой по воздуху на металлоконструкции объекта, которые этот молниеотвод призван защищать [2].

 


 

Лист

3 ТИПОВЫЕ РАСЧЕТЫ МОЛНИЕОТВОДОВ

 

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-06-05; Просмотров: 3251; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.012 с.)
Главная | Случайная страница | Обратная связь