Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Оптические технологии группы xPON.



Группа технологий FTTx (Fiber To The x, где x может быть заменен на B – Building – здание или Cab – Cabinet – распределительный шкаф сети абонентских линий) предназначена для совместного использования с технологиями ADSL и VDSL и позволяет более эффективно использовать пропускную способность этих технологий благодаря сокращению длины медно-кабельных линий связи.

Эти технологии позволяют предоставлять индивидуальному пользователю каналы с пропускной способностью выше 1 Гбит/с, однако стоимость их пока высока. В настоящее время для предоставления пользователям широкополосных услуг используются обычно смешанные медно-оптические сети доступа. Существует несколько концепций разворачивания сети доступа смешанного типа. Одна из них называется HFC (Hybrid Fiber Coaxial) и предполагает доведение оптики до точки концентрации, при этом распределительная абонентская сеть строится на основе коаксиальных кабелей.

Данная архитектура не получила широкого распространения и используется обычно лишь операторами кабельного телевидения. Другая концепция является разновидностью концепции FTTx и носит название FTTB (Fiber To The Building – " волокно к зданию", то есть доведение ВОЛ С до офисного здания). Согласно концепции FTTB распределение сигналов по абонентам внутри здания осуществляется по витым медным парам с использованием преимущественно технологии VDSL.

Из технологий подгруппы PON на сегодняшний день известны 4 вида:

- APON (ATM PON);

- BPON (Broadband PON);

- GPON (Gigabit PON);

- EPON (Ethernet PON).

Стандарт на APON был создан международным консорциумом FSAN (Full Service Access Network) в 1995 году. В состав сети APON входят: один сетевой узел OLT (Optical Line Terminal), до 32 абонентских терминалов ONU (Optical Network Unit) и пассивные оптические ответвители (splitter). Прямой и обратный каналы с пропускной способностью 622 Мбит/с организуются в одном оптическом волокне за счет волнового уплотнения – передача к абонентам ведется на длине волны 1550 нм, а в обратном направлении – 1310 нм. Скорость передачи информации для индивидуального пользователя составляет 20 Мбит/с, а максимальное удаление пользователя от узла доступа – 20 км.

В технологии BPON дополнительно предусмотрены динамическое назначение полосы частот и возможность работы на дополнительных длинах волн. Помимо традиционных, технология BPON реализует большое количество широкополосных услуг, включая доступ в Интернет и трансляцию аналогового и цифрового видео.

В 2001 г. в институте IEEE была образована рабочая группа Ethernet in the First Mile (EFM). Ее основные усилия были направлены на стандартизацию симметричной технологии Ethernet Passive Optical Networking (EPON), обеспечивающей скорость передачи до 1, 25 Гбит/с и предназначенной для транспортировки преимущественно Ethernet-трафика. Результатом деятельности группы стало создание стандарта EPON (IEEE 802.3ah).

Консорциум FSAN предложил новое решение для построения оптических сетей доступа GPON (Gigabit PON).

Данная технология с производительностью свыше 1 Гбит/с (Рек. МСЭ G.984) предназначена для реализации мультисер-висных услуг, причем не только на базе протокола IP, но и на основе ТДМ.

Беспроводные сети доступа.

 

Технология HSPA.

HSPA (High Speed Packet Access – высокоскоростная пакетная передача данных) – технология беспроводной широкополосной радиосвязи, использующая пакетную передачу данных и являющаяся надстройкой к мобильным сетям WCDMA/UMTS.

Максимальная теоретическая скорость передачи данных по стандарту составляет 14, 4 Мбит/сек (скорость передачи данных от базовой станции на всех локальных абонентов) и до 5, 8 Мбит/сек от абонента.

Первые этапы внедрения стандарта обычно имеют скорость 3, 6 Мбит/сек к абоненту HSDPA (D-dowlink). После внедрения второго этапа SDUPA (U-uplink, то есть ускорения передачи от абонента) всю систему и называю сокращённо HSPA.

 

Технология 3GPP LTE.

3GPP LTE (Long Term Evolution – долговременное развитие) – проект разработки консорциумом 3GPP стандарта усовершенствования технологии мобильной передачи данных CDMA, UMTS. Эти усовершенствования могут, например, повысить скорость, эффективность передачи данных, расширить и улучшить уже оказываемые услуги, а также интегрироваться с уже существующими протоколами.

Скорость передачи данных по стандарту 3GPP LTE в теории достигает 326, 4 Мбит/с (демонстрационно 1 Гбит/с на оборудовании для коммерческого использования) на прием (download) и 172, 8 Мит/с на отдачу (upload); в стандарте же прописано 173 Мбит/с на прием и 58 Мбит/с на отдачу.


 

Технология WiMAX.

Технология WiMAX основанна на IEEE 802.16-2004 и 802.16е-2005 стандартах для фиксированного и мобильного беспроводного доступа в городские сети (MAN), а также ряд спецификаций физического уровня для фиксированных и мобильных систем беспроводного широкополосного доступа. Для поддержки протоколов верхних уровней предусмотрен подуровень преобразования сервиса, основной задачей которого является классификация типов для передачи через сети WiMAX. Технологии WiMAX может обеспечивать скорость передачи данных до сотен Мбит/с при фиксированном доступе и порядка десятков Мбит/с при мобильном, зона покрытия превышает 30 км, и она может обеспечить безопасную доставку контента.

WiMAX обеспечивает высокую скорость передачи данных для мобильных и станционных пользователей, и желание пользователей смотреть в режиме реального времени IPTV или использовать услуги VoD может быть реализовано в этих сетях. Реализация IPTV позволит пользователям иметь VoD услуги, а также подписаться на канал по своему выбору, что дает большую гибкость.

Основные задачи, решаемые на под уровне управления доступом к среде (MAC) – это управления множественным доступом, а также обеспечение качества обслуживания (QoS).

MAC-подуровень делится на три подуровня - подуровень преобразования сервиса, основной подуровень и подуровень защиты. На подуровне защиты выполняется функции криптозащиты данных и механизмы аутентификации. Функцией подуровня преобразования сервиса является трансформация потоков данных протоколов более высоких уровней моделей взаимодействия открытых систем ISO/OSI для передачи через сети WiMAX. На основном же подуровне формируется пакеты данных, которые затем передаются на физический уровень.

IEEE 802.16e – это стандарт мобильных сетей WiMAX. Мобильность абонентов подрузумевает жесткие требование к качеству обслуживания. Для обеспечения качества стандарт предусматривает пять типов служб доставки данных: доставка без требования (UGS); доставка в реальном времени с переменной скоростью (RV-VR); доставка в рельном времени с переменной скоростью с расширенными возможностями (ERT-VR); доставка не в реальном времени с переменной скоростью (NRT-VR); доставка по мере возможности (BE). Название этих служб соответствуют типу планирования запросов на предоставление ресурсов в восходящих каналах.

Методы передачи трафика в IP-сетях для IPTV сети.

 

Передача трафика Multicast.

Multicast трафик (групповая передача пакетов) используется для передачи потокового видео, когда необходимо доставить видео-контент неограниченному числу абонентов, не перегружая сеть. Это наиболее часто используемый тип передачи данных в IPTV сетях, когда одну и ту же программу смотрят большое число абонентов.

Multicast трафик использует специальный класс IP-адресов назначения, например адреса в диапазоне 224.0.0.0 ….. 239.255.255.255. Это могут быть IP-адреса класса D.

Multicast адреса не могут быть назначены индивидуальным компьютерам (или STB). Когда данные посылаются по одному из multicast IP-адресов, потенциальный приемник данных может принять решение принимать или не принимать их, то есть будет абонент смотреть этот канал или нет. Такой способ передачи означает, что головное оборудование IPTV оператора будет передавать один единственный поток данных по многим адресам назначения.

Чтобы не формировать отдельный канал передачи данных до каждого пользователя, поток данных передается до ближайшего узла, где данные уже дублируются для всех членов группы.

Это позволяет существенно разгрузить ресурсы сети. Но чтобы добиться это­го, узлы сети должны обмениваться специальной информацией о составе групп и указаниям, кому какой контент доставлять.

Важно знать, что для реализации multicast передачи в IP-сети должны быть маршрутизаторы, поддерживающие multicast. Маршрутизаторы используют протокол IGMP для отслеживания текущего состояния групп рассылки (а именно, членство в той или иной группе того или иного конечного узла сети).

Загрузка магистральной части сети multicast трафиком зависит только от числа транслируемых в сети каналов. В ситуации с Gigabit Ethernet сетью, предположив, что половину магистрального трафика мы можем выделить под multicast передачу, мы получаем около 100 телевизионных MPEG-2 каналов, каждый имеющий скорость потока данных 5 Мб/сек.

2.3.2 Передача трафика Unicast.

Unicast трафик (одноцелевая передача пакетов) используется прежде всего для сервисов «персонального» характера. При этом устанавливается абонентская приставка, и каналы передачи данных в сети соединяются по топологии точка-точка. Запрос на обслуживание задает несколько параметров, включая скорость передачи, качество обслуживания и задержку.

Каждый абонент может запросить персональный видео-контент в произвольное, удобное ему время.

Unicast трафик направляется из одного источника к одному IP-адресу назначения. Этот адрес принадлежит в сети только одному единственному компьютеру или абонентскому STB.

Ожидается, что все большая доля услуг, по причине интерактивности и персонализации IPTV, будет доставляться в виде одноадресного трафика (как отдельный медиапоток к каждому потребителю). Вследствие этого возникнет необходимость персонифицировать контент как можно ближе к абонентам, чтобы свести к минимуму распространение одноадресных потоков и, соответственно, снизить объемы трафика в магистральной сети. В простых случаях решение может состоять в подключении персонального видеомагнитофона на дому.

Но все же для расширения спектра оказываемых услуг потребуется сетевой медиакэш. Медиакэш серверы уже получили некоторое распространение. Однако в настоящее время рассматриваются более эффективные решения, способные обеспечить масштабируемость. Одним из решений является интеграция распределенного медиакэша с узлами широкополосной сети, например, с пограничным IP-маршрутизатором, оптимизированным для передачи пользовательских данных, включая видеопотоки.

Число абонентов, которые могут получать unicast трафик одновременно, ограничено доступной в магистральной части сети шириной потока (скоростью потока). Для случая Gigabit Ethernet сети теоретическая максимальная ширина потока данных может приближаться к 1 Гб/сек за вычетом полосы, необходимой для передачи служебной информации и технологических запасов оборудования. Предположим, что в магистральной части сети мы можем для примера выделить не более половины полосы для сервисов, которым требуется unicast трафик. Легко подсчитать для случая 5Мб/сек на телевизионный канал MPEG2, что число одновременно получающих unicast трафик абонентов не может превышать 100.

2.3.3 Передача трафика Broadcast.

Broadcast трафик (широковещательная передача пакетов) использует специальный IP-адрес, чтобы посылать один и тот же поток данных ко всем абонентам данной IP-сети. Например, такой IP-адрес может оканчиваться на 255, например 192.0.2.255, или иметь 255 во всех четырех полях (255.255.255.255).

Важно знать, что broadcast трафик принимается всеми включенными компьютерами (или STB) в сети независимо от желания пользователя. По этой причине этот вид передачи используется в основном для служебной информации сетевого уровня или для передачи другой исключительно узкополосной информации. Разумеется, для передачи видео-данных broadcast трафик не используется.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-07-12; Просмотров: 1188; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.024 с.)
Главная | Случайная страница | Обратная связь