Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Основные показатели надежности



Основные показатели надежности

 

Показатель надежности количественно характеризует, в какой степени данному объекту присущи определенные свойства, обусловливающие надежность. Одни показатели надежности (например, технический ресурс, срок службы) могут иметь размерность, ряд других (например, вероятность безотказной работы, коэффициент готовности) являются безразмерными.

МЕТОДЫ КОНТРОЛЯ СВАРНЫХ СОЕДИНЕНИЙ СУДОВЫХ ГРУЗОВЫХ УСТРОЙСТВ

Методы контроля сварных соединений. Неразрушающие методы контроля

Сварные конструкции контролируют на всех этапах их изготовления. Кроме того, систематически проверяют приспособления и оборудование. При предварительном контроле подвергаются проверке основные и вспомогательные материалы, устанавливается их соответствие чертежу и техническим условиям,

Наиболее ответственным моментом является текущий контроль выполнения сварки. Организация контроля сварочных работ может производиться в двух направлениях: контролируют сами процессы сварки либо полученные изделия.

В зависимости от того, нарушается или не нарушается целостность сварного соединения при контроле, различают неразрушающие и разрушающие методы контроля.

К неразрушающим методам контроля качества сварных соединений относят внешний осмотр, контроль на непроницаемость (или герметичность) конструкций, контроль для обнаружения дефектов, выходящих на поверхность, контроль скрытых и внутренних дефектов.

В ряде отраслей промышленности неразрушающий контроль сварных соединений выделен в самостоятельный технологический процесс, так как в большинстве случаев трудоемкость контроля соизмерима с трудоемкостью процесса сварки. Затраты на контроль при изготовлении ряда конструкций превосходят затраты на их сварку, а стоимость контрольных операций может достигать 25 — 35% общей стоимости конструкции. Это объясняется, прежде всего, тем, что уровень механизации и автоматизации сварочных работ достаточно высок (~ 35-40%), в то время как доля автоматизированного неразрушающего контроля незначительна (1-2%).

Внешний осмотр и обмеры сварных швов - наиболее простые и широко распространенные способы контроля их качества. Они являются первыми контрольными операциями по приемке готового сварного узла или изделия. Этим видам контроля подвергают все сварные швы независимо от того, как они будут испытаны в дальнейшем.

Внешним осмотром сварных швов выявляют наружные дефекты: непровары, наплывы, подрезы, наружные трещины и поры, смещение свариваемых кромок деталей и т.п. Визуальный осмотр производят как невооруженным глазом, так и с применением лупы с увеличением до 10 раз.

Обмеры сварных швов позволяют судить о качестве сварного соединения: недостаточное сечение шва уменьшает его прочность, слишком большое - увеличивает внутренние напряжения и деформации. Размеры сечения готового шва проверяют по его параметрам в зависимости от типа соединения. У стыкового шва проверяют его ширину, высоту, размер выпуклости со стороны корня шва, в угловом - измеряют катет. Замеренные параметры должны соответствовать ТУ или ГОСТам. Размеры сварных швов контролируют обычно измерительными инструментами или специальными шаблонами.

Внешний осмотр и обмеры сварных швов не дают возможности окончательно судить о качестве сварки. Они устанавливают только внешние дефекты шва и позволяют определить их сомнительные участки, которые могут быть проверены более точными способами.

Контроль непроницаемости сварных швов и соединений. Сварные швы и соединения ряда изделий и сооружений должны отвечать требованиям непроницаемости (герметичности) для различных жидкостей и газов. Учитывая это, во многих сварных конструкциях (емкости, трубопроводы, химическая аппаратура и т.д.) сварные швы подвергают контролю на непроницаемость. Этот вид контроля производится после окончания монтажа или изготовления конструкции. Дефекты, выявленные внешним осмотром, устраняются до начала испытаний. Непроницаемость сварных швов контролируют следующими методами: капиллярным (керосином), химическим (аммиаком), пузырьковым (воздушным или гидравлическим давлением), вакуумированием или газоэлектрическими течеискателями.

Разработана и осуществляется специальная программа по внедрению в сварочное производство современных средств и методов неразрушающего контроля (акустической эмиссии, голографии, томографии и др.). Дальнейшее развитие получат и традиционные методы неразрушающего контроля. К таким методам относят радиационную, ультразвуковую, магнитную и капиллярную дефектоскопию, а также испытания изделий на герметичность

КЛАССИФИКАЦИЯ ОТКАЗОВ ДЕТАЛЕЙ СУДОВОГО ОБОРУДОВАНИЯ

Постепенные (износные) отказы возникают в результате постепенного протекания того или иного процесса повреждения, прогрессивно ухудшающего выходные параметры объекта.
Внезапные отказы возникают в результате сочетания неблагоприятных факторов и случайных внешних воздействий, превышающих возможности объекта к их восприятию. Внезапные отказы характеризуются скачкообразным характером перехода объекта из работоспособно в неработоспособное состояние.
Сложный отказ включает особенности двух предыдущих отказов.
К полным отказам относятся отказы, после которых использование объекта по назначению невозможно (для восстанавливаемых объектов -невозможно до проведения восстановления).
Частичные отказы - отказы, после возникновения которых объект может быть использован по назначению, но с меньшей эффективностью или когда вне допустимых пределов находятся значения не всех, а одного или нескольких выходных параметров.
Независимый отказ - отказ, не обусловленный другими отказами или повреждениями объекта.
Зависимый отказ - отказ, обусловленный другими отказами или повреждениями объекта.
Устойчивые отказы - отказы, которые можно устранить только путем восстановления (ремонта).
Отказы, устраняемые без операций восстановления путем регулирования или саморегулирования, относятся к самоустраняющимся.
Сбой - самоустраняющийся отказ или однократный отказ, устраняемый незначительным вмешательством оператора.
Перемежающийся отказ - многократно возникающий самоустраняющийся отказ одного и того же характера.
Явный отказ - отказ, обнаруживаемый визуально или штатными методами и средствами контроля и диагностирования при подготовке объекта к применению или в процессе его применения по назначению.
Скрытый отказ - отказ, не обнаруживаемый визуально или штатными методами и средствами контроля и диагностирования, но выявляемый при проведении технического обслуживания или специальными методами диагностики.
Большинство параметрических отказов относятся к категории скрытых.
Конструктивный отказ - отказ, возникший по причине, связанной с несовершенством или нарушением установленных правил и (или) норм проектирования и конструирования.
Производственный отказ - отказ, возникший по причине, связанной с несовершенством или нарушением установленного процесса изготовления или ремонта, выполняемого на ремонтном предприятии.
Эксплуатационный отказ - отказ, возникший по причине, связанной с нарушением установленных правил и (или) условий эксплуатации.
Деградационный отказ - отказ, обусловленный естественным процессом старения, изнашивания, коррозии и усталости при соблюдении всех установленных правил и (или) норм проектирования, изготовления и эксплуатации.
Искусственные отказы вызываются преднамеренно, например, с исследовательскими целями, с целью необходимости прекращения функционирования и т.п.
Отказы, происходящие без преднамеренной организации их наступления в результате направленных действий человека (или автоматических устройств), относят к категории естественных отказов.

 

Дефекты макроструктуры

К дефектам макроструктуры, выявляемым при увеличении не более чем в 10 раз, относятся газовые поры, шлаковые включения, непровары, трещины (рис. 3).

Рис. 3. Дефекты макроструктуры в швах
а - стыковых; б - угловых; в - нахлесточных; 1 - непровар; 2 - трещины; 3 - поры; 4 — шлаковые включения

К дефектам макроструктуры, выявляемым при увеличении не более чем в 10 раз, относятся газовые поры, шлаковые включения, непровары, трещины (рис. 3).

Газовые поры образуются в сварных швах вследствие быстрого затвердевания газонасыщенного расплавленного металла, при котором выделяющиеся газы не успевают выйти в атмосферу.

Как правило, такой дефект встречается при повышенном содержании углерода в основном металле, наличии ржавчины, масла и краски на кромках основного металла и поверхности сварочной проволоки, использовании влажного или отсыревшего флюса, присутствии вредных примесей в защитных газах, неправильной регулировке пламени сварочной горелки, чрезмерной скорости сварки, нарушающей газовую защиту ванны жидкого металла, неправильном выборе марки сварочной проволоки, в особенности при сварке в среде углекислого газа. Газовые поры могут быть распределены в шве отдельными группами, в виде цепочки вдоль шва или в виде отдельных включений. Иногда образуются сквозные поры, так называемые свищи. Степень пористости шва и размер отдельных пор во многом зависят от того, как долго сварочная ванна находится в жидком состоянии, которое позволяет образующимся газам выйти из шва.

Шлаковые включения являются результатом небрежной очистки кромок деталей и сварочной проволоки от окалины, ржавчины и грязи, а также (при многослойной сварке) неполного удаления шлака с предыдущих слоев. Кроме того, они возникают при сварке длинной дугой, неправильном наклоне электрода, недостаточной величине сварочного тока или мощности горелки, завышенной скорости сварки.

Шлаковые включения различны по форме (от сферической до игольчатой) и размерам (от микроскопических до нескольких миллиметров). Они могут быть расположены в корне шва между отдельными слоями, а также внутри наплавленного металла.

Шлаковые включения, так же как и газовые поры, ослабляют сечение шва, уменьшают его прочность и являются зонами концентрации напряжений.

Непроваром называют местное несплавление основного металла с наплавленным, а также несплавление между собой отдельных слоев шва при многослойной сварке из-за наличия тонкой прослойки: окислов, а иногда и грубой шлаковой прослойки внутри швов. Причинами непроваров являются: плохая очистка металла от окалины, ржавчины и грязи, малый зазор в стыке, излишнее притупление и малый угол скоса кромок, недостаточная величина тока или мощности горелки, большая скорость сварки, смещение электрода в сторону от оси шва.

При автоматической сварке под флюсом и электрошлаковой сварке непровары обычно образуются в начале процесса, когда основной металл еще недостаточно прогрет. Поэтому сварку начинают на входных технологических планках, отрезаемых в дальнейшем. Иногда непровары по сечению шва возникают из-за вынужденных перерывов в процессе сварки.

При точечной и шовной контактных сварках причинами непроваров являются недостаточная величина тока, продолжительность сварки и давления, большая рабочая поверхность электродов. При стыковой контактной сварке непровары наиболее часто образуются в результате несвоевременного выключения сварочного тока.

Трещины и непровары являются наиболее опасным дефектом сварных швов. Они возникают в самом шве и в околошовной зоне, располагаясь вдоль и поперек шва в виде несплошностей микро- и макроскопических размеров.

Трещины разделяют на горячие и холодные в зависимости от температуры их образования.

Горячие трещины появляются в процессе кристаллизации металла шва при температуре 1100-13000 С. Их образование вызывается наличием полужидких прослоек между кристаллами наплавленного металла шва в конце его затвердевания и действием в нем растягивающих усадочных напряжений. Повышенное содержание в металле шва углерода, кремния, водорода и никеля также способствует образованию горячих трещин. Они обычно расположены внутри шва и их трудно выявить.

Холодные трещины возникают при температурах 100-3000 С в легированных сталях и при нормальных температурах - в углеродистых сталях сразу после остывания шва или через длительный промежуток времени. Основная причина их образования — значительные напряжения, возникающие в зоне сварки при распаде твердого раствора, и скопление под большим давлением молекулярного водорода в пустотах, имеющихся в металле шва. Холодные трещины выходят на поверхность шва и хорошо заметны.

Дефекты микроструктуры

Микроструктура шва и околошовной зоны (рис. 4) в значительной мере определяет свойства сварных соединений и характеризует их качество.

Дефектами микроструктуры сварного соединения являются: микропоры и микротрещины, нитридные, кислородные и другие неметаллические включения, крупно-зернистость, участки перегрева и пережога.

На участке перегрева (см. рис. 4) металл имеет крупнозернистое строение. Чем крупнее зерна, тем меньше поверхность их сцепления и выше хрупкость металла (перегретый металл плохо сопротивляется ударным нагрузкам).

Наиболее опасным дефектом является пережог, при котором в структуре металла шва много окисленных зерен с малым взаимным сцеплением. Такой металл хрупок и не поддается исправлению. Пережог возникает при высокой температуре сварки, плохой изоляции сварочной ванны от воздуха или избытке кислорода в пламени горелки.

Рис. 4. Схема распределения структур в сварном шве и околошовной зоне (цифрами I, II, III и т.д. обозначены одни и те же участки на разрезе шва, кривой распределения температур и шкале температур на диаграмме железо-углерод)
I - неполное расплавление; II - перегрев; III - нормализация; IV - неполная перекристаллизация; V - рекристаллизация; VI - синеломкость

 

Диаметры шатунной шейки

 

Плоскости 1-й пояс 2-й пояс
а–а 171, 73 171, 76
б–б 171, 84 171, 84
в–в 171, 83 171, 82
г–г 171, 83 171, 83

 

Действительная овальность шейки: 171, 84 – 171, 73 = 0, 11 мм.

Действительная конусность шейки: 171, 76 – 171, 73 = 0, 03 мм.

КРИТЕРИЯ ОТКАЗА.


Для правильной оценки отказа вводят понятие критерия отказа.
Критерий отказа - признак или совокупность признаков неработоспособного состояния объекта, установленных в нормативно-технической и (или) конструкторской документации.
Типичные критерии отказов:
прекращение выполнения объектом заданных функций (отказ функционирования); снижение качества функционирования по одному или нескольким из выходных параметров (производительность, мощность, точность и др.) за пределы допускаемого уровня;
искажения информации на выходе объектов, имеющих в своем составе ЭВМ или другие устройства дискретной техники из-за сбоев;
внешние проявления, связанные с наступлением или предпосылками наступления неработоспособного состояния (шум, вибрации, перегрев и др.).
В ГОСТ 15467-79 введено еще одно понятие, отражающее состояние объекта - дефект. Дефектом называется каждое отдельное несоответствие объекта установленным нормам или требованиям. Дефект отражает состояние отличное от отказа. В соответствии с определением отказа, как события, заключающегося в нарушении работоспособности, предполагается, что до появления отказа объект был работоспособен. Отказ может быть следствием развития неустраненных повреждений или наличия дефектов: царапин; потертости изоляции; небольших деформаций.
По признаку стадии происхождения дефекты можно разделить на три группы:
1. Дефекты (ошибки) проектирования. Сюда можно отнести:
недостаточную виброзащищенность РЭСИ;


наличие повышенных напряжений на ЭРЭ;


неправильный выбор материалов;


2. Дефекты изготовления (производственные). К ним можно отнести:


дефекты механической обработки;


дефекты пайки; дефекты термообработки; дефекты сборки.


3. Дефекты эксплуатации. Сюда можно и т.д.................

РИС системы тестового диагностирования

ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ, СВЯЗАННЫЕ СО СРЕДСТВАМИ И СИСТЕМАМИ ТЕХНИЧЕСКОЙ ДИАГНОСТИКИ

Контролепригодность(диагностируемость) – приспособленность объ­екта диагностирования к измерению диагностических признаков (парамет­ров) средствами диагностирования.

Технический диагноз (результат контроля) – Результат диагностирования.

В зависимости от типа воздействий на ОД различают:

Рабочее техническое диагностирование – Диагностирование, при котором на объект подаются рабочие воздействия (в процессе обычного функционирования).

Тестовое техническое диагностирование – диагностирование, при котором на объект подаются тестовые (специальные) воздействия.

Экспресс-диагностирование – диагностирование по ограниченному числу параметров за заранее установленное время.

Приспособленность объекта к диагностированию (контролепригодность) – свойство ОД, характеризующее его пригодность к проведению диагностирования (контроля) заданными средствами диагностирования (контроля).

Алгоритм технического диагностирования (контроля технического состояния) – совокупность предписаний, определяющих последовательность действий при проведении диагностирования (контроля).

Диагностическое обеспечение – комплекс взаимоувязанных правил, методов, алгоритмов и средств, необходимых для осуществления диагностирования на всех этапах жизненного цикла объекта.

Диагностическая модель – формализованное описание ОД, необходимое для решения задач диагностирования.

Диагностический (контролируемый) параметр – параметр ОД, используемый при его диагностировании (контроле).

СТРУКТУРА ТИПОВОЙ СИТД

На рис. представлена развернутая структура типовой СиТД.

Рисунок 3 – Структура типовой СиТД:

1 – датчики сиг­налов; 2 – линии связи с усилительными устройствами; 3 – коммутаторы; 4 – преобразователи; 5 – измерительный прибор; 6 – индикатор; 7 – дискриминатор; (устройство сравнения), 8 – поле допусков, вычисленные коэффициенты модели ОД;
9 – индикатор вида ТС (документирующее или запоминающее устройство);
10 – управляющее устройство, 11 – стимулирующее (воздействующее на ОД) устройство; 12 – прогнозирующее устройство.

Первичной подсисте­мой СТД является измерительное устройство, обеспечивающее заданную точность диагностирования. Так как измерительное устрой­ство, как правило, не может прямо измерять все виды параметров сигналов технической системы или ОД, составными элементами СТД являются такие устройства как коммутаторы и преобразователи.

На выходе измерительного устройства формируется информа­ция позволяющая определить техническое состояние объекта. Эта информация путем различных способов отображения может быть представлена оператору или может быть автоматически обработана для дальнейшего использования.

Важным элементом такой обработки является сравнение представленной информации с полем допусков для вынесения решения о виде ТС ОД.

После принятия решения о ТС ОД осуществляются еще две опера­ции: операция управления качеством изделия и операция стимулирования – изменения структуры ОД.

Прогнозирующее устройство способно определять состояние объекта в будущем посредством обработки информации о текущем и прошлом состояниях системы.

В результате работы функциональных подсистем СиТД, за каждой из которых стоит кон­кретная схемотехническая реализация, и воздействия на тракт помех и шумов, решения о виде ТС всегда выно­сятся с определенной ошибкой. Из опыта известно, что ошибки диагностирования могут быть допущены в основном из-за неисправности средства диагностирования и больших погрешностях измерений в процессе диагностирования. Этого можно попытаться избежать применением средств контроля и самодиагностики самих СТД.

Исходя из этого, правильное диагностирование ТС ОД будет определяться совокупным состоянием ОД и СТД, характеристиками измери­тельных устройств и устройства сравнения, а также правильности применяемых методов диагностирования.

Поэтому количественные характеристики показате­лей диагностирования должны быть пред­ставлены вероятностями состояний ОД и СТД, и вероятностями принятия решений о их ТС.

На количественное значение этих вероятностей в той или иной степени оказывают влияние все элементы структурной схемы тех­нического диагностирования. На погрешность точности измерения параметров сигналов в большей степени влияют:

  1. выбор допусков на диапазон изменения диагностируемых па­раметров;
  2. погрешности преобразования и измерительных приборов;
  3. аддитивные (ступенчатые одиночные) и мультипликативные (повторяющиеся – шум) помехи, возникающие в самом ОД;
  4. шумы в каналах связи и в цепях коммутации;
  5. погрешности сравнения;
  6. ошибки при принятии решения о ТС;
  7. быстродействие системы;
  8. ошибки, возникающие в наборе управляющих и стимулирующих сигналов.

 

 

Существующие методы магнитной толщинометрии защитных покрытий следует различать прежде всего по способу регистрации изменения магнитных свойств системы «толщиномер - неферромагнитное покрытие - ферромагнитная подложка».

Наиболее известными методами являются пондеромоторный, магнитостатический и индукционный. Последний способ является наиболее современным и, на сегодняшний день, наиболее распространённым.

Первоначально широкое распространение получили толщиномеры пондеромоторного принципа действия, работа которых основана на измерении силы отрыва или притяжения постоянных магнитов и электромагнитов к контролируемому объекту. Измерения производят из расчёта того, что сила притяжения магнита пропорциональна квадрату индукции в зазоре между ферромагнитным изделием и намагниченым телом. Индукция, как было показано выше, зависит от напряжённости поля намагничивания и от величины зазора между магнитом и ферромагнитным изделием.

9. Основной недостаток приборов пондеромоторного принципа действия - цикличность процесса измерения, связанная с необходимостью установки магнита и измерения силы его отрыва в каждой новой точке измерения.

10. 2. Действие магнитостатических толщиномеров основано на определении изменения напряжённости магнитного в цепи электромагнита или постоянного магнита при изменении расстояния между ним и ферромагнитным изделием из-за наличия немагнитного покрытия. Информация о толщине покрытия фиксируется магниточувствительными элементами, расположенных либо между полюсами магнита (в магнитной нейтрали), либо около одного из его полюсов. Датчики магнитостатических толщиномеров имеют, таким образом, магнитную основу, что позволяет в процессе проведения измерений «примагничивать» их к поверхности исследуемых деталей. В качестве магниточувствительных элементов могут использоваться такие устройства как рамки с током, магнитные стрелки, феррозонды, датчики Холла и другие.

11.

12.

13. Рис.1.Схема действиямагнитостатическихтолщиномеров:

14. а - с П-образным электромагнитом; б - со стержневым постоянным магнитом; 1 - электромагнит; 2 -- ферромагнитная деталь;

15. 3 - немагнитное покрытие; 4 — преобразователь Холла; 5 -измерительный прибор; 6 — постоянный магнит

Типичные неисправности.

Для турбины: механическое повреждение лопаток посторонними предметами, например обломками поршневых колец; вибрация лопаток; загрязнение, особенно при использовании тяжелых топлив; коррозия корпуса турбины на интенсивно охлаждаемых поверхностях из-за перехода точки росы при работе на тяжелом топливе, загрязнение корпуса.

Рисунок 22 – Увеличение среднего эффективного давления МОД за счет наддува:

1− наддув отсутствует, 2 − одноступенчатый наддув, 3 − двухступенчатый

наддув

Для подшипников качения: износ и усталость материала.

Для системы «компрессор– входной фильтр»: загрязнение продуктами сгорания и другими посторонними включениями, приносимыми воздухом.

Для воздухоохладителя: загрязнение продуктами сгорания и другими посторонними включениями, приносимыми воздухом и водой, коррозия и утечки воздуха

 

ПОСТРОИТЬ ГРАФИК ЗАВИСИМОСТИУВЕЛИЧЕНИЯ СРЕДНЕГО ЭФФЕКТИВНОГО ДАВЛЕНИЯ МОД ЗА СЧЕТ НАДДУВА.

Увеличение среднего эффективного давления достигают за счет повышения наддува. При этом термическая нагрузка на двигатель, прежде всего на ЦПГ, возрастает с увеличением давления наддува, как показано на рисунке 22.

Система наддува имеет наибольшее количество отказов, оказывает значительное влияние на be, стоимость ремонта и обслуживания, готовность двигателя к работе. Эти факты определяют важность диагностики данной системы.

Рисунок 22 – Увеличение среднего эффективного давления МОД за счет наддува:

1− наддув отсутствует, 2 − одноступенчатый наддув, 3 − двухступенчатый

наддув

ДЕФЕКТАЦИЯ СУДОВЫХ ДИЗЕЛЕЙ

 

Дефектация дизелей в профилактическом ремонте, выполняемом силами машинной команды, осуществляется под руководством старшего механика судна.

В текущем ремонте дефектация выполняется отделом технического контроля (ОТК) судоремонтного завода при наблюдении старшего механика судна и представителя механико-судовой службы судовладельца.

К дефектам относятся предельные износы (зазоры), трещины, волосовины, выкрашивание, коррозионные разрушения, забоины, вмятины и другие пороки, нарушающие прочность деталей, плотность соединений, а также вызывающие другие ненормальности в работе.

При дефектации деталей и узлов следует использовать отчетные чертежи, формулярные данные, нормы предельно допустимых износов и зазоров, нормы допустимых послеремонтных размеров (износов) и зазоров.

Детали, работающие под давлением, помимо осмотра и микроизмерений подвергаются в процессе рабочей дефектации гидравлическим и воздушным испытаниям. Для обнаружения в деталях невидимых глазом трещин применяют магнитную дефектоскопию, гаммадефектоскопию, рентген, звуковой или люминесцентный контроль.

Неподвижные соединения следует дефектовать без распрессовки посредством наружного осмотра и гидравлических испытаний на плотность, применяя при необходимости гамма-дефектоскопию, рентгеновский и другие способы обнаружения дефектов.

Основные показатели надежности

 

Показатель надежности количественно характеризует, в какой степени данному объекту присущи определенные свойства, обусловливающие надежность. Одни показатели надежности (например, технический ресурс, срок службы) могут иметь размерность, ряд других (например, вероятность безотказной работы, коэффициент готовности) являются безразмерными.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-07-12; Просмотров: 887; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.059 с.)
Главная | Случайная страница | Обратная связь