Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Движение заряженных частиц в электрическом и магнитном полях.



Описание движения заряженной частицы проводится на основании второго закона Ньютона, уравнение которого имеет вид где qE − сила, действующая на частицу с электрическим зарядом q со стороны электрического поля; qv x B − сила Лоренца, действующая на частицу со стороны магнитного поля. В общем случае напряженность электрического поля E и индукция магнитного поля B могут зависеть от координат (в неоднородных полях) и времени (в нестационарных полях).

27.Ускорители заряженных частиц. класс устройств для получения заряженных частиц (элементарных частиц, ионов) высоких энергий. В основе работы ускорителя заложено взаимодействие заряженных частиц с электрическим и магнитным полями. Электрическое поле способно напрямую совершать работу над частицей, то есть увеличивать её энергию. Магнитное же поле, создавая силу Лоренца, только отклоняет частицу, не изменяя её энергии, и задаёт орбиту, по которой движутся частицы. Ускорители можно разделить на две большие группы. Это линейные ускорители, где пучок частиц однократно проходит ускоряющие промежутки, и циклические ускорители, в которых пучки движутся по замкнутым кривым (например, окружностям), проходя ускоряющие промежутки по многу раз.

28.Постоянный ток — ток, направление и величина которого слабо меняются во времени.

Электрическим током называют упорядоченное (направленное) движение заряженных частиц. Такими заряженными частицами в проводниках – веществах, проводящих электрический ток, – являются электроны, а в жидкостях и газах – еще и заряженные ионы – атомы, лишенные одного или нескольких электронов (либо наоборот, имеющие лишние электроны). Для возникновения электрического тока в проводнике, необходимо создать электрическое поле, которое поддерживается источниками электрического тока. Сила тока I равна отношению электрического заряда q, прошедшего через поперечное сечение проводника, ко времени его прохо ждения: Сила тока в СИ измеряется в амперах (А), а электрический заряд – в кулонах (Кл). Сила тока измеряется амперметром. Сила тока в СИ измеряется в амперах (А), а электрический заряд – в кулонах (Кл). Сила тока измеряется амперметром. Сила тока направлена в сторону, противоположную направлению движения электронов.(рис.1)

Рисунок 1

Для широкого класса проводников (в т. ч. металлов) сила тока в проводнике прямо пропорциональна напряжению (закон Ома):

Коэффициент пропорциональности R называется электрическим сопротивлением и измеряется в омах (Ом). Причиной электрического сопротивления является взаимодействие электронов при их движении по проводнику с ионами кристаллической решетки.

Электрическое сопротивление металлов прямо пропорционально длине проводника и обратно пропорционально площади его поперечного сечения:

Уравнение непрерывности.

 

Электродвижущая сила.

Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних (непотенциальных) сил висточниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура. ЭДС можно выразить через напряжённость электрического поля сторонних сил ( ). В замкнутом контуре ( ) тогда ЭДС будет равна:

где — элемент длины контура.

ЭДС так же, как и напряжение, измеряется в вольтах. Можно говорить об электродвижущей силе на любом участке цепи. Это удельная работа сторонних сил не во всем контуре, а только на данном участке. ЭДС гальванического элемента есть работа сторонних сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому. Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит от формы траектории. Так, например, работа сторонних сил при перемещении заряда между клеммами тока вне самого источника равна нулю.

31.ЭДС индукции. Причиной электродвижущей силы может стать изменение магнитного поля в окружающем пространстве. Это явление называетсяэлектромагнитной индукцией. Величина ЭДС индукции в контуре определяется выражением.

где — поток магнитного поля через замкнутую поверхность , ограниченную контуром. Знак «− » перед выражением показывает, что индукционный ток, созданный ЭДС индукции, препятствует изменению магнитного потока в контуре.

Источники постоянного тока.

Простейшим источником постоянного тока является химический источник (гальванический элемент или аккумулятор), поскольку полярность такого источника не может самопроизвольно измениться.

Для получения постоянного тока используют также электрические машины — генераторы постоянного тока.

В электронной аппара туре, питающейся от сети переменного тока, для получения постоянного тока используют выпрямитель. Далее для уменьшения пульсаций может быть использован сглаживающий фильтр и, при необходимости, стабилизатор тока или стабилизатор напряжения.


Поделиться:



Популярное:

  1. Анти-частицы. Взаимные превращения вещества и поля.
  2. БИЛЕТ 13. Работа по перемещению контура с током в магнитном поле. Энергия магнитного поля
  3. БИЛЕТ 18.Волновое движение. Плоская гармоническая волна. Длина волны, волновое число. Фазовая скорость. Уравнение волны. Одномерное волновое уравнение.
  4. БИЛЕТ 30. Гипотеза ле Бройля. Опыты Дэвиссона и Джермера. Дифракция микрочастиц. Принцип неопределенности Гейзенберга
  5. БИЛЕТ. Магнитное взаимодействие постоянных токов. Вектор магнитной индукции. Закон Ампера. Сила Лоренца. Движение зарядов в электрических и магнитных полях.
  6. Все КВС совершают вращательное движение вокруг Ядра Вселенной, точно
  7. Вы намерены продолжить движение прямо. Кому следует уступить дорогу?
  8. ГЛАВА 38 Движение в пространстве и времени
  9. Глава XVIII. ДВИЖЕНИЕ РОМАНТИЗМА
  10. Движение - одна из основных проблем естествознания
  11. Движение «Зеленые» провели Конференцию по вопросам взаимодействия промышленных предприятий, особо охраняемые природные территории (ООПТ) и регионов
  12. Движение в пространстве-времени


Последнее изменение этой страницы: 2016-07-13; Просмотров: 811; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.016 с.)
Главная | Случайная страница | Обратная связь