Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Методы расчеты электрических цепей: метод эквивалентного генератора и принцип суперпозиции.
метод эквивалентного генератора: Этот метод основан на сформулированной выше теореме (См. предыдущую лекцию) и применяется в тех случаях, когда требуется рассчитать ток в какой-либо одной ветви при нескольких значениях ее параметров (сопротивления и ЭДС) и неизменных параметрах всей остальной цепи. Сущность метода заключается в следующем. Вся цепь относительно зажимов интересующей нас ветви представляется как активный двухполюсник, который заменяется эквивалентным генератором, к зажимам которого подключается интересующая нас ветвь. В итоге получается простая неразветвленная цепь, ток в которой определяется по закону Ома. ЭДС ЕЭ эквивалентного генератора и его внутреннее сопротивление RЭ находятся из режимов холостого хода и короткого замыкания двухполюсника. Искомый ток Iab находится по закону Ома для полной цепи Для нахождения тока нужно узнать Еэкв и rэкв с помощью режимов эквивалентного генератора. Для того чтобы найти эквивалентную ЭДС, нужно рассмотреть режим холостого хода генератора, другими словами нужно отсоединить исследуемую ветвь ab, тем самым избавив генератор от нагрузки, после чего он будет работать на так называемом холостом ходу. Напряжение холостого хода Uх, будет равно эквивалентной ЭДС Eэкв. Таким образом мы можем найти Eэкв. Следующим этапом решения задачи будет нахождение эквивалентного сопротивления rэкв. Можно воспользоваться режимом короткого замыкания генератора, при котором сопротивление Rab отсутствует, но в более сложных схемах это может привести к более громоздким расчётам, поэтому найдем rэкв как входное сопротивление пассивного двухполюсника. Пассивным называется двухполюсник у которого отсутствуют источники ЭДС. Простыми словами нужно убрать во внешней цепи источник ЭДС и найти сопротивление цепи, так и поступим. Эквивалентное сопротивление rэкв равно ( тем, кто не умеет находить эквивалентное сопротивление, нужно прочитать статью виды соединения проводников ) Итак, найдя эквивалентные ЭДС и сопротивление, мы можем найти силу тока в ветви ab На этом всё, ток в нужной ветви найден, а значит, задача решена методом эквивалентного генератора. Принцип суперпозиции Действие любого количества источников электрической энергии на линейную электрическую цепь независимо. Ток в любой ветви схемы равен алгебраической сумме токов, вызываемых каждым источником в отдельности. Основные параметры гармонического сигнала. В электроэнергетике нашли широкое применение синусоидальные сигналы, как наиболее экономичные. Для передачи информации в технике связи и радиотехнике используют различные модуляции синусоидальных сигналов: амплитудную, частотную, фазовую. В общем случае любой несинусоидальный сигнал может быть представлен в виде суммы синусоидальных сигналов различной частоты с помощью разложения в ряд Фурье. И, таким образом, расчет подобных цепей может быть сведен к расчету цепей синусоидального тока и напряжения. , где – мгновенное значение; – амплитуда переменного сигнала – максимальная по модулю его величина; – фаза гармонического сигнала – аргумент при синусе в каждый момент времени; – начальная фаза – значение аргумента в начальный момент времени (t = 0). Фаза измеряется в радианах или градусах. В дальнейшем под переменным сигналом будем понимать гармонический (синусоидальный) сигнал (рис. 3.1). О значениях периодических токов и напряжений обычно судят по их среднеквадратических значениях за период, которые называют действующим значением тока и напряжения и обозначают I, U:
Сигналы, мгновенные значения которых повторяются через определенный фиксированный промежуток времени, называются периодическими, а этот промежуток времени – периодом. Такие сигналы описываются следующим образом: где Т – период, с. Величина, обратная периоду, называется частотой : . Также существует понятие угловой (циклической) частоты: . Популярное:
|
Последнее изменение этой страницы: 2016-07-13; Просмотров: 1238; Нарушение авторского права страницы