|
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Методы расчеты электрических цепей: контурных токов и узловых потенциалов.
Метод контурных токов Метод контурных токов сводится к составлению уравнений только по второму закону Кирхгофа. Число этих уравнений, равное При этом предполагаем, что в каждом выбранном контуре протекают независимые друг от друга расчетные токи, называемые контурными. Ток каждой ветви определяется как алгебраическая сумма контурных токов, замыкающихся через эту ветвь, с учетом принятых направлений контурных токов и знаков их величин. Число контурных токов равно числу «ячеек» (элементарных контуров) схемы электрической цепи. Если рассматриваемая схема содержит источник тока, то независимые контуры необходимо выбирать так, чтобы ветвь с источником тока входила только в один контур. Для этого контура расчетное уравнение не составляется, так как контурный ток равен току источника. Каноническая форма записи уравнений контурных токов для n независимых контуров имеет вид
Взаимным сопротивлением приписывается знак плюс, если протекающие по ним контурные токи Таким образом, составление уравнений контурных токов может быть сведено к записи симметричной матрицы сопротивлений
и вектора контурных ЭДС
При введении вектора искомых контурных токов |
Решение системы линейных уравнений алгебраических уравнений (5) для тока n-го контура может быть найдено по правилу Крамера
где
Метод узловых потенциалов. Сущность метода заключается в том, что в качестве неизвестных принимаются узловые напряжения (потенциалы) независимых узлов цепи относительно одного узла, выбранного в качестве опорного или базисного. Потенциал базисного узла принимается равным нулю, и расчет сводится к определению (q-1) узловых напряжений, существующих между остальными узлами и базисным. Уравнения узловых напряжений в канонической форме при числе независимых узлов n=q-1 имеют вид
Коэффициент Коэффициент Правая часть уравнений (9) называется узловым током, Узловой ток равен алгебраической сумме всех источников тока, подключенных к рассматриваемому узлу, плюс алгебраическая сумма произведений ЭДС источников на проводимость ветви с ЭДС
При этом со знаком «плюс» слагаемые записываются в том случае, если ток источника тока и ЭДС источника напряжения направлены к узлу, для которого составляется уравнение. Приведенная закономерность определения коэффициентов существенно упрощает составление уравнений, которое сводится к записи симметричной матрицы узловых параметров
и вектора узловых токов источников
Уравнения узловых напряжений можно записать в матричной форме
Если в какой-либо ветви заданной схемы содержатся только идеальный источник ЭДС (сопротивление этой ветви равно нулю, т.е. проводимость ветви равна бесконечности), целесообразно в качестве базисного выбрать один из двух узлов, между которыми включена эта ветвь. Тогда потенциал второго узла становится также известным и равным по величине ЭДС (с учетом знака). В этом случае для узла с известным узловым напряжением (потенциалом) уравнение составлять не следует и общее число уравнений системы уменьшается на единицу. Решая систему уравнений (9), определяем узловые напряжения, а затем по закону Ома определяем токи в ветвях. Так для ветви, включенной между узлами m и n ток равен
При этом с положительным знаком записываются те величины (напряжения, ЭДС), направление которых совпадает с выбранным координатным направлением. В нашем случае (11) – от узла m к узлу n. Напряжение между узлами
Популярное:
|
Последнее изменение этой страницы: 2016-07-13; Просмотров: 976; Нарушение авторского права страницы