Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Методы расчета электрических цепей постоянного тока. Активные и пассивные элементы цепей постоянного тока (источники и нагрузки). Закон Ома для участка цепи.



Методы расчета электрических цепей постоянного тока. Активные и пассивные элементы цепей постоянного тока (источники и нагрузки). Закон Ома для участка цепи.

Методы Расчета:

Метод уравнений Кирхгофа

Этот метод является наиболее общим методом решения задачи анализа электрической цепи. Он основан на решении системы уравнений, составленных по первому и второму законам Кирхгофа относительно реальных токов в ветвях рассматриваемой цепи. Следовательно, общее число уравнений p равно числу ветвей с неизвестными токами. Часть этих уравнений составляется по первому закону Кирхгофа, остальные – по второму закону Кирхгофа. В схеме содержащей q узлов, по первому закону Кирхгофа можно составить q уравнений. Однако, одно из них (любое) является суммой всех остальных. Следовательно, независимых уравнений, составленных по первому закону Кирхгофа, будет .

По второму закону Кирхгофа должны быть составлены недостающие m уравнений, число которых равно .

Для записи уравнений по второму закону Кирхгофа необходимо выбрать m контуров так, чтобы в них вошли в итоге все ветви схемы.

Первый закон Кирхгофа

В любом узле электрической цепи алгебраическая сумма токов равна нулю

,

где m – число ветвей подключенных к узлу.

При записи уравнений по первому закону Кирхгофа токи, направленные к узлу, берут со знаком «плюс», а токи, направленные от узла – со знаком «минус». Например, для узла а (см. рис. 1.2) II1I2=0.

Второй закон Кирхгофа

В любом замкнутом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений на всех его участках

,

где n – число источников ЭДС в контуре;
m – число элементов с сопротивлением Rk в контуре;
Uk=RkIk – напряжение или падение напряжения на k-м элементе контура.

Метод контурных токов

Метод контурных токов сводится к составлению уравнений только по второму закону Кирхгофа. Число этих уравнений, равное , на уравнений меньше числа уравнений, необходимых для расчета электрических цепей по методу законов Кирхгофа.

При этом предполагаем, что в каждом выбранном контуре протекает независимые друг от друга расчетные токи, называемые контурными. Ток каждой ветви определяется как алгебраическая сумма контурных токов, замыкающихся через эту ветвь, с учетом принятых направлений контурных токов и знаков их величин.

Число контурных токов равно числу «ячеек» (элементарных контуров) схемы электрической цепи. Если рассматриваемая схема содержит источник тока, то независимые контуры необходимо выбирать так, чтобы ветвь с источником тока входила только в один контур. Для этого контура расчетное уравнение не составляется, так как контурный ток равен току источника.

Каноническая форма записи уравнений контурных токов для n независимых контуров имеет вид

где

- контурный ток n-го контура;

- алгебраическая сумма ЭДС, действующих в n-ом контуре, называемая контурная ЭДС;

- собственное сопротивление n-го контура, равная сумме всех сопротивлений, входящих в рассматриваемый контур;

- сопротивление принадлежащие одновременно двум контурам (в данном случае контуром n и i) и называемое общим или взаимным сопротивлением этих контуров. Первым ставится индекс контура, для которого составляется уравнение. Из определения взаимного сопротивления следует, что сопротивления, отличающиеся порядком индексов, равны, т.е. .

Взаимным сопротивлением приписывается знак плюс, если протекающие по ним контурные токи и имеют одинаковые направления, и знак минус, если их направления противоположны.

Таким образом, составление уравнений контурных токов может быть сведено к записи симметричной матрицы сопротивлений

 

и вектора контурных ЭДС

При введении вектора искомых контурных токов | | уравнения (5) можно записать в матричной форме

Решение системы линейных уравнений алгебраических уравнений (5) для тока n-го контура может быть найдено по правилу Крамера

,

где - главный определитель системы уравнений, соответствующий матрице контурных сопротивлений

 

 

3. Метод узловых напряжений (потенциалов)

Сущность метода заключается в том, что в качестве неизвестных принимаются узловые напряжения (потенциалы) независимых узлов цепи относительно одного узла, выбранного в качестве опорного или базисного. Потенциал базисного узла принимается равным нулю, и расчет сводится к определению (q-1) узловых напряжений, существующих между остальными узлами и базисным.

Уравнения узловых напряжений в канонической форме при числе независимых узлов n=q-1 имеют вид

Коэффициент называется собственной проводимостью n-го узла. Собственная проводимость равна сумме проводимостей всех ветвей, присоединенных к узлу n.

Коэффициент называется взаимной или межузловой проводимостью. Она равна взятой со знаком «минус» сумме проводимостей всех ветвей, соединяющих напрямую узлы i и n.

Правая часть уравнений (9) называется узловым током, Узловой ток равен алгебраической сумме всех источников тока, подключенных к рассматриваемому узлу, плюс алгебраическая сумма произведений ЭДС источников на проводимость ветви с ЭДС

При этом со знаком «плюс» слагаемые записываются в том случае, если ток источника тока и ЭДС источника напряжения направлены к узлу, для которого составляется уравнение.

Приведенная закономерность определения коэффициентов существенно упрощает составление уравнений, которое сводится к записи симметричной матрицы узловых параметров

и вектора узловых токов источников

Уравнения узловых напряжений можно записать в матричной форме

.

Если в какой-либо ветви заданной схемы содержатся только идеальный источник ЭДС (сопротивление этой ветви равно нулю, т.е. проводимость ветви равна бесконечности), целесообразно в качестве базисного выбрать один из двух узлов, между которыми включена эта ветвь. Тогда потенциал второго узла становится также известным и равным по величине ЭДС (с учетом знака). В этом случае для узла с известным узловым напряжением (потенциалом) уравнение составлять не следует и общее число уравнений системы уменьшается на единицу.

Решая систему уравнений (9), определяем узловые напряжения, а затем по закону Ома определяем токи в ветвях. Так для ветви, включенной между узлами m и n ток равен

 

При этом с положительным знаком записываются те величины (напряжения, ЭДС), направление которых совпадает с выбранным координатным направлением. В нашем случае (11) – от узла m к узлу n. Напряжение между узлами определяется через узловые напряжения

.

Первый закон Кирхгофа

В любом узле электрической цепи алгебраическая сумма токов равна нулю

,

где m – число ветвей подключенных к узлу.

При записи уравнений по первому закону Кирхгофа токи, направленные к узлу, берут со знаком «плюс», а токи, направленные от узла – со знаком «минус». Например, для узла а (см. рис. 1.2) II1I2=0.

Второй закон Кирхгофа

В любом замкнутом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений на всех его участках

,

где n – число источников ЭДС в контуре;
m – число элементов с сопротивлением Rk в контуре;
Uk=RkIk – напряжение или падение напряжения на k-м элементе контура.

E1+E2+…+En = I1R1+I2R2+…+InRn

Баланс мощностей является следствием закона сохранения энергии — суммарная мощность вырабатываемая (генерируемая) источниками электрической энергии равна сумме мощностей потребляемой в цепи.

В любой электрической цепи сумма мощностей всех источников электрической энергии должна быть равна сумме мощностей всех приемников и вспомогательных элементов.

Получив ранее выражения мощностей (1.9), (1.18) — (1.20) и (1.32), можно записать в общем виде уравнение баланса мощности для любой электрической цепи:

(1.35)

Σ EI + Σ UI = Σ EI + Σ UI + Σ I2r.

Делитель тока

Делитель тока на резисторах — электротехническое устройство, позволяющее разделять ток и использовать только часть от подаваемого в цепь тока посредством элементов электрической цепи, состоящей из резисторов.

При проектировании электрических цепей возникают случаи, когда в цепи протекает ток одного номинала, а номинально-допустимый ток нагрузки должен быть меньше. Для этих целей используют делители тока. Делители тока основаны на первом законе Кирхгофа.

Самая простая схема резистивного делителя тока - это два параллельно подключенных сопротивления и источник напряжения или тока.

На приведенной ниже схеме ток I при достижении узла разделяется на два тока I2 и I3. Согласно первому закону Кирхгофа ток I равен сумме токов I2 и I3.

Напряжение на сопротивлениях UR2 и UR3 одинаковое, т.к. они соединены параллельно.

Если к сопротивлениям R2 и R3 приложено напряжение U, то ток через сопротивления, согласно закону Ома:

Подключаем нагрузку последовательно к R1 или к R2. Выбираем то сопротивление, через которое протекает нужный ток. В результате через нагрузку будет протекать ток IR3=I3.

Делитель напряжения

При проектировании электрических цепей возникают случаи, когда необходимо уменьшить величину напряжения (разделить его на несколько частей) и только часть подавать на нагрузку. Для этих целей используют делители напряжения. Они основаны на втором законе Кирхгофа.

Самая простая схема - резистивный делитель напряжения. Последовательно с источником напряжения подключаются два сопротивления R1 и R2.

При последовательном подключении сопротивлений через них протекает одинаковый ток I.

В результате, согласно закону Ома, напряжения на резисторах делится пропорционально их номиналу.

Подключаем нагрузку параллельно к R1 или к R2. В результате на нагрузке будет напряжение равное UR2.

Метод контурных токов

Метод контурных токов сводится к составлению уравнений только по второму закону Кирхгофа. Число этих уравнений, равное , на уравнений меньше числа уравнений, необходимых для расчета электрических цепей по методу законов Кирхгофа.

При этом предполагаем, что в каждом выбранном контуре протекают независимые друг от друга расчетные токи, называемые контурными. Ток каждой ветви определяется как алгебраическая сумма контурных токов, замыкающихся через эту ветвь, с учетом принятых направлений контурных токов и знаков их величин.

Число контурных токов равно числу «ячеек» (элементарных контуров) схемы электрической цепи. Если рассматриваемая схема содержит источник тока, то независимые контуры необходимо выбирать так, чтобы ветвь с источником тока входила только в один контур. Для этого контура расчетное уравнение не составляется, так как контурный ток равен току источника.

Каноническая форма записи уравнений контурных токов для n независимых контуров имеет вид

где

- контурный ток n-го контура;

- алгебраическая сумма ЭДС, действующих в n-ом контуре, называемая контурная ЭДС;

- собственное сопротивление n-го контура, равная сумме всех сопротивлений, входящих в рассматриваемый контур;

- сопротивление принадлежащие одновременно двум контурам (в данном случае контуром n и i) и называемое общим или взаимным сопротивлением этих контуров. Первым ставится индекс контура, для которого составляется уравнение. Из определения взаимного сопротивления следует, что сопротивления, отличающиеся порядком индексов, равны, т.е. .

Взаимным сопротивлением приписывается знак плюс, если протекающие по ним контурные токи и имеют одинаковые направления, и знак минус, если их направления противоположны.

Таким образом, составление уравнений контурных токов может быть сведено к записи симметричной матрицы сопротивлений

 

и вектора контурных ЭДС

При введении вектора искомых контурных токов | | уравнения (5) можно записать в матричной форме

Решение системы линейных уравнений алгебраических уравнений (5) для тока n-го контура может быть найдено по правилу Крамера

,

где - главный определитель системы уравнений, соответствующий матрице контурных сопротивлений

Метод узловых потенциалов.

Сущность метода заключается в том, что в качестве неизвестных принимаются узловые напряжения (потенциалы) независимых узлов цепи относительно одного узла, выбранного в качестве опорного или базисного. Потенциал базисного узла принимается равным нулю, и расчет сводится к определению (q-1) узловых напряжений, существующих между остальными узлами и базисным.

Уравнения узловых напряжений в канонической форме при числе независимых узлов n=q-1 имеют вид

Коэффициент называется собственной проводимостью n-го узла. Собственная проводимость равна сумме проводимостей всех ветвей, присоединенных к узлу n.

Коэффициент называется взаимной или межузловой проводимостью. Она равна взятой со знаком «минус» сумме проводимостей всех ветвей, соединяющих напрямую узлы i и n.

Правая часть уравнений (9) называется узловым током, Узловой ток равен алгебраической сумме всех источников тока, подключенных к рассматриваемому узлу, плюс алгебраическая сумма произведений ЭДС источников на проводимость ветви с ЭДС

При этом со знаком «плюс» слагаемые записываются в том случае, если ток источника тока и ЭДС источника напряжения направлены к узлу, для которого составляется уравнение.

Приведенная закономерность определения коэффициентов существенно упрощает составление уравнений, которое сводится к записи симметричной матрицы узловых параметров

и вектора узловых токов источников

Уравнения узловых напряжений можно записать в матричной форме

.

Если в какой-либо ветви заданной схемы содержатся только идеальный источник ЭДС (сопротивление этой ветви равно нулю, т.е. проводимость ветви равна бесконечности), целесообразно в качестве базисного выбрать один из двух узлов, между которыми включена эта ветвь. Тогда потенциал второго узла становится также известным и равным по величине ЭДС (с учетом знака). В этом случае для узла с известным узловым напряжением (потенциалом) уравнение составлять не следует и общее число уравнений системы уменьшается на единицу.

Решая систему уравнений (9), определяем узловые напряжения, а затем по закону Ома определяем токи в ветвях. Так для ветви, включенной между узлами m и n ток равен

 

При этом с положительным знаком записываются те величины (напряжения, ЭДС), направление которых совпадает с выбранным координатным направлением. В нашем случае (11) – от узла m к узлу n. Напряжение между узлами определяется через узловые напряжения

.

 

Принцип суперпозиции

Действие любого количества источников электрической энергии на линейную электрическую цепь независимо. Ток в любой ветви схемы равен алгебраической сумме токов, вызываемых каждым источником в отдельности.

Изображение синусоидальных ЭДС, напряжений и токов с помощью вращающихся векторов и комплексных чисел. Формулы Эйлера для комплексных чисел. Сложение, вычитание, умножение, деление синусоидальных функций времени. Векторная диаграмма.

Геометрические операции с векторами можно заменить алгебраическими операциями с комплексными числами, что существенно повышает точность получаемых результатов.

Каждому вектору на комплексной плоскости соответствует определенное комплексное число, которое может быть записано в:

показательной

тригонометрической или

алгебраической - формах.

Например, ЭДС , изображенной на рис. 7 вращающимся вектором, соответствует комплексное число

.

Фазовый угол определяется по проекциям вектора на оси “+1” и “+j” системы координат, как

.

В соответствии с тригонометрической формой записи мнимая составляющая комплексного числа определяет мгновенное значение синусоидально изменяющейся ЭДС:

, (4)  

Рис.2.7. Векторное изображение синусоидальных ЭДС

 

Рис.2.8. Векторное изображение синусоидальных значений напряжения и тока, имеющих угол сдвига фаз

 

На рис. 2.9 и 2.10 показано сложение и вычитание векторов на векторных диаграммах. Здесь сложение двух синусоид и , представленных синусоидой , выполнено в виде сложения вращающихся векторов на декартовой плоскости . Аналогично выполняется вычитание векторов ЭДС .

 

Изображение синусоидальных величин на комплексной плоскости осуществляется комплексными числами.

 

Формула Эйлера:

Данная формула связывает комплексную экспоненту с тригонометрическими функциями:

 

Перевод комплексных чисел из одной формы в другую можно производить по следующим формулам:

;

;

При сложении и вычитании комплексных чисел удобно пользоваться алгебраической формой записи:

 

При умножении, делении, возведении в степень удобно пользоваться показательной формой

Если комплексное число , то комплексное число называется сопряженным комплексным числом.

Синусоидальное ЭДС можно представить комплексным числом:

Для напряжения и тока аналогично.

 

Дифференцирующие цепи. ФВЧ

Методы расчета электрических цепей постоянного тока. Активные и пассивные элементы цепей постоянного тока (источники и нагрузки). Закон Ома для участка цепи.

Методы Расчета:

Метод уравнений Кирхгофа

Этот метод является наиболее общим методом решения задачи анализа электрической цепи. Он основан на решении системы уравнений, составленных по первому и второму законам Кирхгофа относительно реальных токов в ветвях рассматриваемой цепи. Следовательно, общее число уравнений p равно числу ветвей с неизвестными токами. Часть этих уравнений составляется по первому закону Кирхгофа, остальные – по второму закону Кирхгофа. В схеме содержащей q узлов, по первому закону Кирхгофа можно составить q уравнений. Однако, одно из них (любое) является суммой всех остальных. Следовательно, независимых уравнений, составленных по первому закону Кирхгофа, будет .

По второму закону Кирхгофа должны быть составлены недостающие m уравнений, число которых равно .

Для записи уравнений по второму закону Кирхгофа необходимо выбрать m контуров так, чтобы в них вошли в итоге все ветви схемы.

Первый закон Кирхгофа

В любом узле электрической цепи алгебраическая сумма токов равна нулю

,

где m – число ветвей подключенных к узлу.

При записи уравнений по первому закону Кирхгофа токи, направленные к узлу, берут со знаком «плюс», а токи, направленные от узла – со знаком «минус». Например, для узла а (см. рис. 1.2) II1I2=0.

Второй закон Кирхгофа

В любом замкнутом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений на всех его участках

,

где n – число источников ЭДС в контуре;
m – число элементов с сопротивлением Rk в контуре;
Uk=RkIk – напряжение или падение напряжения на k-м элементе контура.

Метод контурных токов

Метод контурных токов сводится к составлению уравнений только по второму закону Кирхгофа. Число этих уравнений, равное , на уравнений меньше числа уравнений, необходимых для расчета электрических цепей по методу законов Кирхгофа.

При этом предполагаем, что в каждом выбранном контуре протекает независимые друг от друга расчетные токи, называемые контурными. Ток каждой ветви определяется как алгебраическая сумма контурных токов, замыкающихся через эту ветвь, с учетом принятых направлений контурных токов и знаков их величин.

Число контурных токов равно числу «ячеек» (элементарных контуров) схемы электрической цепи. Если рассматриваемая схема содержит источник тока, то независимые контуры необходимо выбирать так, чтобы ветвь с источником тока входила только в один контур. Для этого контура расчетное уравнение не составляется, так как контурный ток равен току источника.

Каноническая форма записи уравнений контурных токов для n независимых контуров имеет вид

где

- контурный ток n-го контура;

- алгебраическая сумма ЭДС, действующих в n-ом контуре, называемая контурная ЭДС;

- собственное сопротивление n-го контура, равная сумме всех сопротивлений, входящих в рассматриваемый контур;

- сопротивление принадлежащие одновременно двум контурам (в данном случае контуром n и i) и называемое общим или взаимным сопротивлением этих контуров. Первым ставится индекс контура, для которого составляется уравнение. Из определения взаимного сопротивления следует, что сопротивления, отличающиеся порядком индексов, равны, т.е. .

Взаимным сопротивлением приписывается знак плюс, если протекающие по ним контурные токи и имеют одинаковые направления, и знак минус, если их направления противоположны.

Таким образом, составление уравнений контурных токов может быть сведено к записи симметричной матрицы сопротивлений

 

и вектора контурных ЭДС

При введении вектора искомых контурных токов | | уравнения (5) можно записать в матричной форме

Решение системы линейных уравнений алгебраических уравнений (5) для тока n-го контура может быть найдено по правилу Крамера

,

где - главный определитель системы уравнений, соответствующий матрице контурных сопротивлений

 

 

3. Метод узловых напряжений (потенциалов)

Сущность метода заключается в том, что в качестве неизвестных принимаются узловые напряжения (потенциалы) независимых узлов цепи относительно одного узла, выбранного в качестве опорного или базисного. Потенциал базисного узла принимается равным нулю, и расчет сводится к определению (q-1) узловых напряжений, существующих между остальными узлами и базисным.

Уравнения узловых напряжений в канонической форме при числе независимых узлов n=q-1 имеют вид

Коэффициент называется собственной проводимостью n-го узла. Собственная проводимость равна сумме проводимостей всех ветвей, присоединенных к узлу n.

Коэффициент называется взаимной или межузловой проводимостью. Она равна взятой со знаком «минус» сумме проводимостей всех ветвей, соединяющих напрямую узлы i и n.

Правая часть уравнений (9) называется узловым током, Узловой ток равен алгебраической сумме всех источников тока, подключенных к рассматриваемому узлу, плюс алгебраическая сумма произведений ЭДС источников на проводимость ветви с ЭДС

При этом со знаком «плюс» слагаемые записываются в том случае, если ток источника тока и ЭДС источника напряжения направлены к узлу, для которого составляется уравнение.

Приведенная закономерность определения коэффициентов существенно упрощает составление уравнений, которое сводится к записи симметричной матрицы узловых параметров

и вектора узловых токов источников

Уравнения узловых напряжений можно записать в матричной форме

.

Если в какой-либо ветви заданной схемы содержатся только идеальный источник ЭДС (сопротивление этой ветви равно нулю, т.е. проводимость ветви равна бесконечности), целесообразно в качестве базисного выбрать один из двух узлов, между которыми включена эта ветвь. Тогда потенциал второго узла становится также известным и равным по величине ЭДС (с учетом знака). В этом случае для узла с известным узловым напряжением (потенциалом) уравнение составлять не следует и общее число уравнений системы уменьшается на единицу.

Решая систему уравнений (9), определяем узловые напряжения, а затем по закону Ома определяем токи в ветвях. Так для ветви, включенной между узлами m и n ток равен

 

При этом с положительным знаком записываются те величины (напряжения, ЭДС), направление которых совпадает с выбранным координатным направлением. В нашем случае (11) – от узла m к узлу n. Напряжение между узлами определяется через узловые напряжения

.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-07-13; Просмотров: 844; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.116 с.)
Главная | Случайная страница | Обратная связь