Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Ответ острой фазы как общая реакция организма на повреждение.



а) Характеристика понятия " ответ острой фазы". Взаимосвязь местных и общих

реакций организма на повреждение.

Ответ острой фазы (ООФ) или реакция острой фазы – это общие неспецифические реакции на повреждение, которые вовлекают в ответ важнейшие защитные и регуляторные системы организма и типовые изменения обмена веществ.

В сложной цепи причинно-следственных отношений выделяют местные и общие изменения. Вопрос о взаимоотношении местных и общих явлений в патогенезе болезни, патологического процесса остается достаточно сложным. В целостном организме абсолютно локальных процессов не бывает. В патологический процесс, болезнь вовлекается весь организм. Как известно, при любой патологии: пульпит, стоматит, локальный ожог, фурункул, аденома гипофиза - страдает весь организм. И тем не менее, значение локальных и общих явлений в патогенезе весьма вариабельно. Различают 4 варианта взаимосвязи местных и общих процессов в патогенезе:

Процесс начинается с местного повреждения органа или ткани в результате действия внешних или внутренних факторов, затем включаются адаптивные реакции, направленные на отграничение очага повреждения (например, воспаление- грануляционный вал, пиогенная капсула, барьерная функция лимфоузлов).

Участие общих реакций организма мобилизует локальные тканевые адаптивные механизмы, вследствие чего основные параметры гомеостаза (температура тела, количество лейкоцитов и лейкоцитарная формула, СОЭ, обмен веществ) существенно не меняются.

Местный процесс через рецепторы и поступление в кровь и лимфу БАВ вызывает развитие генерализованной реакции организма и определенные сдвиги параметров гомеостаза. Включаются приспособительные реакции, направленные на предупреждение развития общих патологических изменений в организме.

Генерализация местного процесса при его тяжелом течении отличается максимальной напряженностью адаптивных и защитных реакций и процессов, а также выраженностью патологических явлений на уровне организма. Возникает общая интоксикация организма, сепсис. Параметры гомеостаза могут выйти за рамки совместимых с жизнью изменений.

Локальные патологические изменения органов и систем могут развиться вторично на основе первично генерализованного процесса (ионизирующее излучение - больше поражаются ткани, характеризующиеся интенсивной пролиферацией клеток; при отравлении сулемой преимущественно поражаются почки).

При развитии любой болезни, как правило, обнаруживаются неспецифические и специфические механизмы. Неспецифические механизмы определяются включением в патогенез типовых патологических процессов, которые характеризуются закономерным, стереотипным и генетически детерминированным развертыванием во времени различных процессов: воспаления, лихорадки, изменения микроциркуляции, тромбоза и др., а также повышением проницаемости биомембран, генерацией активных форм кислорода и т.п.

Затем активируется система клеточного и гуморального иммунитета, обеспечивающая специфическую защиту и борьбу с чужеродным объектом, попавшим в организм. Однако, четкого разграничения специфических и неспецифических механизмов не существует.

 

 

б) Белки острой фазы, их эффекты.

Белки ООФ. ООФ характеризуется весьма существенным увеличением содержания в сыворотке крови ряда белков, которые и получили название белков острой фазы. У человека имеется около 30 таких белков, важнейшими из которых являются С-реактивный белок, сывороточный амилоид А, фибриноген, гаптоглобин, a1-антитрипсин, a1-антихимотрипсин, церулоплазмин, С3-компонент комплемента, инактиватор С1-компонента комплемента, фибронектин, трансферрин, альбумин.

При остро развивающемся повреждении содержание в крови С-реактивного белка и сывороточного амилоида возрастает уже через 6-10 часов и может увеличиваться более чем в 1000 раз. Концентрация других белков ОФ, в частности фибриногена и антиферментов, растет медленнее, т.е. в течение 24-48 часов и может увеличиваться в 10 и более раз. Существуют белки, содержание которых в сыворотке во время ООФ снижается. Их стали называть “негативными белками острой фазы”. К ним, в частности, относятся альбумин и трансферрин.

Уровень белков ООФ в крови определяется, прежде всего, синтезом и секрецией их печенью. Важнейшим регулятором этих процессов являются ИЛ-6 и родственные ему цитокины, в меньшей степени – ИЛ-1, ФНО-a, а также глюкокортикоиды.

Биологическая роль белков острой фазы. Белки острой фазы осуществляют различные функции, способствующие сохранению гомеостаза:

обеспечивают развитие воспаления;

стимулируют фагоцитоз чужеродных начал;

нейтрализуют свободные радикалы;

разрушают потенциально опасные для тканей белки и т.д.

Одним из первых идентифицированных белков острой фазы является С-реактивный белок. Он принадлежит к числу главных белков врожденной иммунной системы, способных распознавать чужеродные антигены. В свое время было обнаружено, что в присутствии ионов кальция этот белок специфически связывается с С-полисахаридом пневмококков, в связи с чем его назвали С-реактивным протеином. Позже оказалось, что он способен взаимодействовать с другими типами полисахаридов и липидными компонентами мембраны микробов. С-реактивный белок действует как опсонин, поскольку его связь с микроорганизмами облегчает их поглощение фагоцитами. Он активирует комплемент, способствуя лизису бактерий и развитию воспаления. Кроме того, он усиливает цитотоксическое действие макрофагов на клетки опухоли и стимулирует высвобождение ими цитокинов. Содержание С-реактивного белка в сыворотке крови быстро нарастает в самом начале инфекционных и неинфекционных болезней (с 1 мкг до 1 мг/мл) и быстро падает при выздоровлении.

Сывороточный амилоид А подобно С-реактивному белку является элементом врожденной иммунной системы.

Фибриноген – белок свертывающей системы крови. Он создает матрикс для заживления ран, обладает противовоспалительной активностью, препятствует развитию отека.

Церулоплазмин – протектор клеточных мембран, нейтрализующих активность супероксидного и других радикалов, образующихся при воспалении.

Гаптоглобин связывает гемоглобин, а образующийся при этом комплекс действует как пероксидаза – фермент, способствующий окислению различных органических веществ перекисями. Гаптоглобин ограничивает утилизацию кислорода патогенными бактериями.

Антиферменты – сывороточные белки, которые ингибируют протеолитические ферменты, попадающие в кровь из мест воспаления, где они появляются в результате дегрануляции лейкоцитов и гибели клеток поврежденных тканей. К ним принадлежит a-антитрипсин, который подавляет действие трипсина, коллагеназы, эластазы, урокиназы, химотрипсина, плазмина, тромбина, ренина, лейкоцитарных протеаз. Недостаточность a1-антитирпсина приводит к разрушению тканей ферментами лейкоцитов в очаге воспаления

Трансферрин – белок, обеспечивающий транспорт железа по крови. При ООФ его содержание в плазме снижается, что приводит к гипосидеремии.

 

в) Основные медиаторы ответа острой фазы, их происхождение и биологические эффекты.

Медиаторы ООФ. Сейчас установлено, что системные реакции, составляющие суть ООФ, обусловлены появлением в организме специфических веществ, получивших наименование медиаторов ООФ. Медиаторы ООФ вырабатываются клетками, участвующими в воспалительной реакции, развивающейся в месте первичного повреждения. Как указывалось, такими клетками являются моноциты, макрофаги, гранулоциты, лимфоциты, эндотелиоциты, фибробласты, дендритные клетки кожи, мезангиальные клетки почек, глиальные клетки, нейроны и другие. Медиаторы ООФ попадают в кровоток и далее взаимодействуют с клетками-мишенями всех органов и тканей через многочисленные специфические рецепторы, локализованные на цитоплазматических мембранах. Медиаторов ООФ много, но к числу наиболее значимых следует отнести ИН-1, ИЛ-6, ФНО-a.

Интерлейкин-1. ИЛ-1 представляет собой многофункциональный цитокин, впервые обнаруженный как продукт лейкоцитов, вызывающий лихорадку при введении животным. ИЛ-1 относится к семейству, состоящему из трех структурно родственных пептидов: интерлейкина-1a (ИЛ-1a), интерлейкина-1b (ИЛ-1b) и антагониста рецептора для ИЛ-1.

. ИЛ-1 продуцируют многие клетки: моноциты, макрофаги, эндотелиоциты, нейтрофилы, В-лимфоциты, натуральные киллеры, фибробласты, дендритные клетки кожи, мезангиальные клетки почек, клетки глии, нейроны. Способностью секретировать ИЛ-1 обладают некоторые опухолевые клетки.

Синтез ИЛ-1 может быть вызван разными факторами: микроорганизмами и продуктами их жизнедеятельности, антигенами немикробного происхождения, органическими и неорганическими соединениями неантигенной природы таким, как соли кремния, желчных кислот, мочевой кислоты, цитокинами (ФНОa, ИЛ-6), активными компонентами комплемента (С5а), нейрогормонами (вещество Р), гликопротеинами табака, ионизирующим излучением, гипоксией, гипероксией, перегреванием и другими.

Биологические эффекты ИЛ-1. ИЛ-1 опосредует различные защитные процессы в организме, активируемые при его повреждении. Прежде всего, ИЛ-1 является медиатором воспаления, развивающегося на месте повреждения. Когда связанная с повреждением продукция ИЛ-1 возрастает, он вызывает многие системные реакции, что делает его важнейшим медиатором ООФ.

ИЛ-1 стимулирует иммунную систему. Он активирует Т-клетки, усиливает продукцию ими ИЛ-2, индуцирует экспрессию рецепторов для ИЛ-2 на активированных антигеном Т-клетках. Это приводит к быстрому разрастанию соответствующего клона Т-клеток. Совместно с другими цитокинами он активирует и В-клетки, способствуя их пролиферации и дифференцировке в продуцирующие антитела плазматические клетки.

ИЛ-1 обладает выраженным действием на ЦНС. Образуясь на периферии, ИЛ-1 проникает в ткань мозга в крайне малых дозах только через сосудистую зону области третьего желудочка, где нет гематоэнцефалического барьера. Некоторая часть ИЛ-1 синтезируется нервными элементами ЦНС и эндотелиоцитами сосудов мозга. Источниками ИЛ-1 (почти исключительно ИЛ-1b) являются структуры гипоталамуса и гиппокампа, которые участвуют в формировании реакции стресса и координации функции нервной и эндокринной систем.

Синтез ИЛ-1b в мозге увеличивается через несколько часов после парентерального введения эндотоксина. Усиление продукции ИЛ-1 также происходит после приступа судорог или локального повреждения мозга (в последнем случае источником образования ИЛ-1 помимо нейроглии и нейронов могут быть макрофаги, проникшие сюда из кровеносного русла). При воспалительных процессах мозга (менингиты, энцефалиты) значительные количества ИЛ-1 обнаруживаются в спинномозговой жидкости. Наличие в мозге ИЛ-1 вызывает лихорадку, сонливость, анорексию, адинамию, депрессию, изменение функции эндокринной системы.

ИЛ-1 активирует гипоталамо-гипофизарно-надпочечниковую систему, в первую очередь, через стимуляцию секреции кортикотропинрилизинг-фактора гипоталамусом, который повышает синтез и выброс гипофизом АКТГ, в результате чего в крови растет содержание кортизола. Аналогично усиливается выброс рилизинг-фактора для тиреотропного гормона, который стимулирует синтез тиреотропного гормона и тироксина. Увеличивается выброс вазопрессина. Одним из важных последствий изменения функций эндокринной системы под влиянием ИЛ-1 является предупреждение избыточной активации иммунной системы.

На стволовые полипотентные клетки костного мозга ИЛ-1 в присутствии ИЛ-3 и других факторов гемопоэза действует как гемопоэтин, что ведет к тромбоцитозу и нейтрофильному лейкоцитозу со сдвигом лейкоцитарной формулы влево. ИЛ-1 стимулирует секрецию других цитокинов, участвующих в ООФ, прежде всего, ИЛ-6 и ФНОa.

Свое биологическое действие на клетку-мишень ИЛ-1 реализует через рецепторы на цитоплазматической мембране. Имеется две разновидности интерлейкиновых рецепторов. Активация одно из них обеспечивает передачу сигнала внутрь клетки. Уже спустя 10-15 мин после взаимодействия с рецептором в клетке активируются многие протеинкиназы, переносятся в ядро транскрипционные факторы, что позволяет клетке начать транскрипцию генов, индуцируемых ИЛ-1.

Значительная часть эффектов ИЛ-1 реализуется с участие циклооксигеназы, которая катализирует метаболизм арахидоновой кислоты, ведущей к образованию простагландинов. Применение блокаторов циклооксигеназы (например, аспирина, индометацина) подавляет вызванную ИЛ-1 лихорадку, анорексию и другие эффекты.

В организме существует сложная система регуляции потенциально повреждающего действия ИЛ-1. В крови здорового человека и больных людей циркулируют растворимые рецепторы ИЛ-1, которые представляют собой фрагменты цитоплазматических рецепторов ИЛ-1 первого и второго типов. Оба растворимых рецептора связывают избыток свободного ИЛ-1, предупреждая тем самым его взаимодействие с мембранными рецепторами.

Другим важным элементом системы регуляции действия ИЛ-1 является естественный антагонист рецептора ИЛ-1 – третий член семейства ИЛ-1. Он синтезируется многими клетками, в том числе и теми клетками, которые продуцируют ИЛ-1, хотя главными источниками синтеза антагониста рецептора для ИЛ-1 являются, скорее всего, гепатоциты. Он специфически связывается с цитоплазматическими рецепторами для ИЛ-1, блокируя тем самым действие самого ИЛ-1 на его клетки мишени. Взаимодействие самого ИЛ-1 с антагонистом рецептора не является сигналом для каких либо внутриклеточных процессов, а его введение в кровь здоровым людям не оказывает заметного влияния на их организм: ни количество лейкоцитов, ни биохимические показатели не изменяются, не реагируют на него и железы внутренней секреции. Вместе с тем, этот антагонист интерлейкинового рецептора эффективно подавляет многие вызываемые ИЛ-1 патологические процессы – лихорадку, гипотензию, синтез белков острой фазы печенью, симптомы септического шока.

Должное соотношение между продукцией ИЛ-1 и антагониста его рецептора во время болезни регулируется определенными цитокинами. Так, ИЛ-6 и ФНОa стимулируют продукцию ИЛ-1, а ИЛ-4, ИЛ-10 и трансформирующий фактор роста-b усиливают секрецию антагонистов ИЛ-1 и одновременно снижают секрецию ИЛ-1.

Хотя в организме существуют механизмы «сдерживания» провоспалительной активности ИЛ-1, при некоторых условиях он синтезируется в чрезмерных количествах, что вызывает разрушение тканей, степень которого может превысить первоначальное повреждение. В таких случаях продукция ИЛ-1 становится фактором, определяющим все дальнейшее течение болезни.

Значительное увеличение сывороточного ИЛ-1b обнаруживается при септическом шоке – клиническом синдроме, возникающем при тяжелых бактериальных инфекциях. Синдром характеризуется выраженной гипотензией, лихорадкой, лейкоцитозом. Многие проявления септического шока можно воспроизвести у животных инъекцией ИЛ-1. Введение блокаторов действия ИЛ-1 оказывает положительный эффект при экспериментальном септическом шоке у животных и больных септическим шоком людей.

При ревматоидном артрите синовиальная оболочка инфильтрирована макрофагами, лимфоцитами и другими клетками хронического воспаления. В синовиальной жидкости суставов обнаруживается ИЛ-1, и многие симптомы ревматоидного артрита – лейкоцитарная инфильтрация синовиальной оболочки, распад хряща и ремоделирование костей вокруг сустава могут быть воспроизведены в эксперименте на животных введением им в сустав ИЛ-1.

Имеются веские доказательства участия ИЛ-1 в повреждении тканей при воспалительных болезнях кишечника, почек, гибели В-клеток островков Лангерганса поджелудочной железы при инсулинзависимом сахарном диабете, в развитии атеросклероза и в патогенезе многих других болезней. Есть данные, свидетельствующие о прогрессировании под влиянием ИЛ-1 миелолейкоза.

ИЛ-1 – один из главных медиаторов острого повреждения легких, возникающего при остром респираторном дистресс-синдроме взрослых, который проявляется резким отеком легких и массированной инфильтрацией легочной ткани нейтрофилами. В бронхиальном лаваже обнаруживают высокое содержание ИЛ-1.

Интерлейкин-6. Многофункциональный цитокин ИН-6 впервые идентифицирован как секретируемый Т-клетками фактор, вызывающий конечную дифференцировку В-клеток в плазматические клетки, продуцирующие антитела. ИЛ-6 синтезируется макрофагами, фибробластами, эндотелиоцитами, эпителиальными клетками, моноцитами, Т-клетками, кератоцитами кожи, клетками эндокринных желез, глиальными элементами и нейронами отдельных областей мозга.

Главным стимулятором синтеза ИЛ-6 являются вирусы, бактерии, эндотоксины, липополисахариды, грибы, провоспалительные цитокины ИЛ-1 и ФНОa. ИЛ-1 секретируют также многие линии опухолевых клеток (остеосаркомы, карциномы мочевого пузыря, шейки матки, миксомы, глиобластомы). В отличие от нормальных клеток, опухолевые ткани продуцируют ИЛ-6 постоянно и в отсутствии всякой внешней стимуляции.

Реализация действия ИЛ-6 осуществляется через специфические рецепторы для ИЛ-6, наибольшее количество которых обнаруживается на гепатоцитах, почему до 80% всего вводимого меченого ИЛ-6 фиксируется клетками печени. Синтез рецепторов для ИЛ-6 осуществляется под влиянием самих молекул ИЛ-6. Рецепторы для ИЛ-6 имеются также на Т-лимфоцитах, В-лимфоцитах, активированных митогеном, фибробластах, моноцитах и др. Их находят также на мембранах клеток некоторых опухолей (гистиоцитомы, миеломы, астроцитомы и т.п.). Помимо фиксированных рецепторов имеется и растворимая форма интерлейкинового рецептора. Содержание растворимого рецептора для ИЛ-6 в крови значительно возрастает при аутоиммунных болезнях и плазмоцитомах, что может вызвать нежелательные последствия.

Биологическая роль ИЛ-6. ИЛ-6 – главный стимулятор синтеза и секреции белков острой фазы гепатоцитами. ИЛ-6 активирует ось «гипоталамус-гипофиз-надпочечники», вызывая секрецию кортикотропинвысвобождающего фактора нейронами гипоталамуса и прямо воздействуя на клетки передней доли гипофиза. Подобно ИЛ-1 он опосредует лихорадочный ответ на эндотоксин, стимулирует пролиферацию лейкоцитов в костном мозге.

ИЛ-6 необходим для конечной дифференцировки активированных В-лимфоцитов в плазматические клетки. Он усиливает продукцию некоторых классов иммуноглобулинов зрелыми плазматическими клетками, стимулирует пролиферацию и дифференцировку Т-лимфоцитов, усиливает продукцию ИЛ-2 зрелыми Т-клетками.

ИЛ-6 относится к семейству гемопоэтических цитокинов, он обладает свойствами фактора роста и дифференцировки для полипотентных стволовых клеток, стимулирует рост гранулоцитов и макрофагов. Кроме того, ИЛ-6 действует как фактор роста для некоторых неопластически трансформированных В-лимфоцитов, в том числе В-клеток человека, трансформированных вирусом Эпштейна-Барр. Он может быть аутокринным фактором роста для клеток миеломы человека, клеток лимфомы, плазмоцитомы, гибридомы.

Роль ИЛ-6 в болезнях. Хотя первичная роль ИЛ-6 состоит в активации процессов восстановления нарушенного гомеостаза, его избыточная продукция способствует повреждению тканей. Так, существует прямая корреляция между степенью увеличения ИЛ-6 и прогрессией аутоиммунного ответа. ИЛ-6 способствует воспалительному повреждению суставов при ревматоидном артрите. Длительное повышение уровня ИЛ-6 в крови может быть причиной активации остеокластов, разрушающих кость.

Важную роль играет ИЛ-6 в патогенезе множественной миеломы – опухоли, образованной неопластически трансформированными плазматическими клетками. ИЛ-6 – главный фактор поддержания пролиферации злокачественных плазмобластов.

ИЛ-6 представляется чувствительным, хотя и неспецифическим маркером болезней. Если в сыворотке здорового человека его содержание ниже пределов определяемости (1 пикограмм/мл), то при травмах, опухолях, инфекциях оно возрастает в сотни раз выше этого уровня. Вызванный повреждением подъем уровня ИЛ-6 в сыворотке происходит очень быстро, примерно через 1, 5-4 часа после повреждения. Содержание ИЛ-6 уменьшается параллельно со снижением температуры и затуханием сопутствующего повреждению воспаления. Степень повышения уровня ИЛ-6 в сыворотке зависит от тяжести повреждения. Поэтому определение содержания ИЛ-6 в сыворотке позволяет значительно более точно судить о динамике ответа острой фазы, чем изменения белков острой фазы.

Фактор некроза опухолей. ФНО – третий ключевой гормон ООФ. Он впервые был обнаружен как агент, появляющийся в сыворотке крови животных и человека во время бактериальных инфекций, способный убивать опухолевые клетки in vitro и вызывать геморрагический некроз опухолевого трансплантата in vivo. Он же оказался ответственным за развитие кахексии при тяжелых хронических болезнях, что дало ему второе название – кахектин.

Синтез ФНОa индуцируется бактериальными токсинами (липополисаридами, энтеротоксином), вирусами, микобактериями, грибами, паразитами, активированными компонентами комплемента, комплексами антиген-антитело, цитокинами (ИЛ-1, ИЛ-6, гранулоцитарно-моноцитарным колониестимулирующим фактором).

Биологическая роль ФНОa. ФНОa обладает мощным провоспалительным действием, которое обнаруживается, прежде всего, в местах его высвобождения. Он активирует лейкоциты, экспрессирует молекулы адгезии на мембранах эндотелиоцитов, способствуя миграции лейкоцитов из крови в межклеточный матрикс, стимулирует продукцию лейкоцитами активных метаболитов кислорода, секрецию провоспалительных цитокинов клетками воспалительной ткани, включая ИЛ-1, ИЛ-6, ИЛ-8, g-интерферон. Во время пролиферации ФНОa способствует размножению фибробластов, стимулирует ангиогенез.

ФНОa действует как иммунорегулятор: усиливает пролиферацию Т-лимфоцитов, пролиферацию и дифференцировку В-лимфоцитов, стимулирует рост натуральных киллеров, усиливает их цитотоксичность. ФНОa является одним из важнейших факторов защиты от внутриклеточных патогенов, обладает противовирусной активностью. Он замедляет рост или вызывает геморрагический некроз опухолей in vivo, цитотоксичен для многих линий опухолевых клеток in vitro. ФНОa участвует в гемопоэзе, защищает полипотентные стволовые клетки от сублетальных доз облучения и специфических токсинов клеточного типа, возможно, путем снижения митотической активности.

Роль ФНОa в болезнях. Чрезмерная продукция ФНОa является важнейшим звеном патогенеза септического шока. Содержание ФНОa в сыворотке прямо связано с вероятностью летального исхода при шоке. Блокада образования или предупреждение действия ФНОa на клетки, например, посредством анти-ФНО-a-антител оказывает благоприятное действие при экспериментальном септическом шоке у животных и у больных септическим шоком людей. Предполагают участие ФНОa в развитии раковой кахексии и кахексии при хронических инфекционных болезнях. ФНОa может быть ключевым медиатором в реакциях отторжения трансплантата и в болезнях трансплантат против хозяина. Он играет важную роль в повреждении мозга при менингитах, патогенезе ревматоидного артрита, формировании респираторного дистресс-синдрома и патогенезе других болезней.

 

г) Проявления ответа острой фазы и их патогенез.

Наиболее характерные проявления ответа острой фазы:

развитие лихорадки;

развитие вялости, сонливости, снижения работоспособности;

синтез белков острой фазы в печени;

активация гипофизарно-надпочечниковой системы;

развитие нейтрофилии;

активация макрофагов и нейтрофилов;

усиление пролиферации и дифференцирования фибробластов и, как следствие, активация заживления ран;

активация клеток иммунной системы;

снижение массы тела.

 

д) Биологическое значение ответа острой фазы.

Клинические проявления ООФ определяются степенью вовлечения в реакции нервной, эндокринной, иммунной и кроветворной систем, а также функций печени. Наиболее значимыми среди них являются лихорадка, сонливость, анорексия, миалгия, артралгия, появление в крови «белков острой фазы», гипергаммаглобулинемия, гипоальбуминемия, увеличение СОЭ, активация систем комплемента, иммунитета и свертывания крови, нейтрофилия с ядерным сдвигом влево, повышенная продукция АКТГ и далее кортикостероидов, усиленная секреция инсулина и вазопрессина, отрицательный азотистый баланс, снижение содержания в сыворотке железа и цинка и увеличение меди.

Этиология и патогенез шока.

а) Определения понятия " шок". Виды шока.

Шок – типовой патологический процесс, вызываемый чрезвычайными агентами внешней и внутренней среды, представляющий комплекс патологических и защитно-приспособительных реакций в виде перевозбуждения и торможения ЦНС, гипотензии, гипоперфузии, гипоксии органов, тканей и расстройств метаболизма Классификация шоков по акад. В.К. Кулагину:

I. Рецепторный: а) психический; б) болевой; в) электрический.
II. Травматический: а) при механической травме;
б) операционный; в) раневой;
г) геморрагический; д) компрессионный;
е) ожоговый.
III. Токсический: а) эндотоксический;
б) экзотоксический; в) анафилактический;
г) септический.
IV. Ишемический: а) " турникетный" (при снятии жгута
выделяются токсины в кровь);
б) при тромбозе или эмболии крупных сосудов.
V. Неврогенный (центрогенный): а) при параличе
сосудодвигательного центра; б) " спинальный"
(при перерыве или перерезке спинного мозга).
VI. Смешанный.

В зависимости от причин возникновения выделяют следующие виды шока:

1) травматический

2) геморрагический

3) ожоговый

4) турникетный (развивается после снятия жгута спустя четыре часа и более после наложения)

5) ангидремический (дегидратационный)

6) кардиогенный

7) панкреатический

8) септический

9) инфекционно-токсический

10)анафилактический

 

б) Основные отличия шока от коллапса.

Отличие коллапса от шока: 1) При коллапсе отсутствуют фазы. 2) Коллапс развивается остро и начинается с резких нарушений центральной гемодинамики. При коллапсе имеется первичная вазоконстр. недостаточность. Принципы патогенетической терапии те же самые, что и при шоке.
при шоке всегда имеются органные нарушения. При коллапсе имеется падение кровяного давления и ухудшение кровоснабжения жизненно важных органов. Эти изменения обратимы. При шоке возникают полиорганные нарушения жизненно важных функций сердечно-сосудистой системы, нервной и эндокринной систем, а также нарушения дыхания, тканевого обмена, функций почек. Если для шока характерны снижение артериального и венозного давления крови; холодная и влажная кожа с мраморной или бледно-синюшной окраской; тахикардия; нарушения дыхания; уменьшение количества мочи; наличие либо фазы беспокойства или затемнения сознания, то для коллапса характерна резкая слабость, бледность кожных покровов и слизистых, похолодание конечностей, и конечно – снижение кровяного давления.

- при коллапсе истощается только СДЦ, в отличие от шока, когда истощается вся ЦНС.

в) Общие механизмы развития шока.

1. гиповолемия

2. сердечно-сосудистая недостаточность

3. активация симпатико-адреналовой системы

4. нарушения микроциркуляции

г) Факторы, влияющие на развитие шока.

Быстрая кровопотеря

Переутомление

Охлаждение или перегревание

Голодание

Повторные травмы (транспортировка)

Проникающая радиация и ожоги, то есть комбинированные повреждения с взаимным отягощением.

 

д) Особенности этиологии и патогенеза отдельных форм шока.

Особенности отдельных видов шока

Ожоговый шок.В его патогенезе важную роль играют следующие факторы. Во-первых, для ожогового шока характерна сильнейшая боль, поскольку обожженные ткани становятся источником мощной болевой импульсации. Вследствие этого эректильная фаза ожогового шока чрезвычайно кратковременна (обычно ее не видят, поскольку она заканчивается до прибытия врача или помещения больного в стационар). Поэтому торпидная фаза при ожоговом шоке протекает крайне тяжело

Во-вторых, при ожоговом шоке ОЦК снижается вследствие не только сосудистых расстройств, но и в результате интенсивнейшей плазморрагии через обожженную поверхность. Больной теряет огромное количество жидкости и степень сгущения крови при ожоговом шоке значительно выше, чем при шоке любой другой этиологии. Поэтому при ожоговом шоке следует переливать больному не цельную кровь, а плазму или физиологический раствор, с тем, чтобы разбавить эритроцитарную массу (предпочтительны кровезамещающие жидкости, содержащие высокомолекулярные коллоиды, которые создают высокое онкотическое давление в сосудистом русле, восстанавливая ОЦК).

В-третьих, в данной ситуации наблюдается интоксикация за счет всасывания с обширной раневой поверхности продуктов распада тканей. Поэтому в комплекс терапевтических мероприятий при ожоговом шоке обязательно входит дезинтоксикация организма, заключающаяся во введении больших количеств жидкости, содержащей глюкозу, витамины, а также проведение гемодиализа и гемосорбции. В-четвертых, обожженная поверхность представляет собой обширные раневые ворота инфекции, что требует соответствующих мероприятий (проведение антибактериальной терапии, содержание больных в палатах со стерильным воздухом и др.).

Электрошок.Этот вид шока наступает в результате поражения электрическим током и относится к группе болевых шоков, что и определяет комплекс терапевтических мероприятий. Однако при электрошоке имеется ряд особенностей, которые требуют особого внимания и специфической терапии.

1. Если электрический ток прошел через все тело или через грудную клетку, то возможно развитие фибрилляции желудочков сердца Поэтому, в данном случае, при оказании такому пострадавшему первой помощи следует применить закрытый массаж сердца, а при наличии необходимой аппаратуры — электрическую дефибрилляцию сердца. Параллельно проводится искусственное дыхание.

2. При прохождении электрического токи через голову возможно глубочайшее угнетение дыхательного и сосудодвигательного центров, в связи с чем нередко приходится часами проводить искусственное дыхание и массаж сердца до тех пор, пока не восстановится деятельность этих центров.

3. В месте поражения электрический ток вызывает электролиз тканей — появляются знаки тока, что ведет к развитию долго не заживающих и с трудом поддающихся лечению местных повреждений.

Кардиогенный шок.При массивном инфаркте миокарда больной может впасть в состояние кардиогенного шока, летальность при котором достигает 90%. В патогенезе этого тяжелого состояния важную роль играют следующие три фактора:

1. Интенсивный болевой синдром, возникающий в результате ишемии обширных участков миокарда и накопления в нем недоокисленных продуктов.

2. Отек миокарда, развивающийся вследствие резкого повышения сосудисто-тканевой проницаемости в сердечной мышце.

3. Сосудистая недостаточность (коллапс), являющаяся выражением тотальных нарушений гемодинамики в организме при массивном инфаркте миокарда.

В связи со сказанным терапия кардиогенного шока должна наряду с ликвидацией болевого синдрома включать мероприятия по быстрому снижению проницаемости мембран (внутривенное введение глюкокортикоидов) и степени отека миокарда (применение диуретиков, дренаж лимфы, в том числе и хирургическое дренирование грудного лимфатического протока) и нормализация сосудистого тонуса.

Гемотрансфузионный шок.Он возникает при переливании больному несовместимой крови. Образующийся при этом комплекс «антиген-антитело» является чрезвычайным раздражителем для сосудистых интерорецепторов, вследствие чего и возникает мощный поток афферентной импульсации в высшие нервные центры. Это было доказано следующими опытами (С.М.Павленко, 1942). У животного отсепаровывался участок кровеносного сосуда, соединенный с организмом лишь нервными стволами. Если этот отрезок сначала отмывался от крови, а затем в него вводилась чужеродная кровь, то расстройств функций организма не наступало. Если же в нем была собственная кровь, то при введении в него чужеродной крови развивалась картина гемотрансфузионного шока; такое же введение в предварительно денервированный отрезок сосуда к шоку не приводило.

При гемотрансфузионном шоке имеются свои клинические особенности, связанные с тем, что при нем наступает гемолиз эритроцитов. Продукты гемолиза особенно сильно повреждают почки, и больной, даже благополучно выйдя из состояния гемотрансфузионного шока, может скончаться в более позднем периоде процесса при явлениях почечной недостаточности. Поэтому в комплекс терапевтических мероприятий при гемотрансфузионном шоке обязательно должны быть включены гемодиализ и гемосорбция. Что касается остальных видов шока, приведенных в классификационной схеме 1, то их развитие принципиально не отличается от патогенеза болевого шока, а некоторые особенности течения являются предметом изучения соответствующих клинических дисциплин.


Поделиться:



Популярное:

  1. Bizz: Белье стирается вперемешку с чужим или как?
  2. Bizz: Допустим, клиент не проверил карман, а там что-то лежит, что может повредит аппарат. Как быть в такой ситуации?
  3. H) Такая фаза круговорота, где устанавливаются количественные соотношения, прежде всего при производстве разных благ в соответствии с видами человеческих потребностей.
  4. I AM HAPPY AS A KING (я счастлив как король)
  5. I. Какие первичные факторы контролируют нервную активность, то есть количество импульсов, передаваемых эфферентными волокнами?
  6. I. Общая характеристика непрямого остеогенеза
  7. I. Общая характеристика общественных отношений
  8. II. цитогенетический ответ или ремиссия
  9. II. ЭКОЛОГИЧЕСКОЕ ПРАВО КАК КОМПЛЕКСНАЯ ОТРАСЛЬ
  10. III КАК РАСТУТ НА НОВОЙ ГВИНЕЕ
  11. III. Половая связь – лишь как конечное завершение глубокой всесторонней симпатии и привязанности к объекту половой любви.
  12. IV. Как узнать волю Господню.


Последнее изменение этой страницы: 2016-07-13; Просмотров: 4511; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.061 с.)
Главная | Случайная страница | Обратная связь