Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Расчетные формулы на прочность и жёсткость при кручении.



Кручением называется такой вид деформации, когда в поперечном сечении бруса возникает лишь один внутренний силовой фактор – крутящий момент Т.

Будем рассматривать случай (так называемого) нестесненного кручения, когда деформации стержня в направлении его оси не затруднены. В таком случае в поперечных сечениях стержня возникают только касательные напряжения. Этот факт можно принять за первое допущение, используемое нами в дальнейшем выводе.

Второе допущение имеет геометрический характер и состоит в том, что поперечные сечения при кручении остаются плоскими и их радиусы не искривляются.

Как показывает точное решение задачи методами теории упругости, для круглых поперечных сечений эта гипотеза выполняется абсолютно точно.

Нашей задачей будет определение напряжений и перемещений в закручиваемом стержне.

Рассмотрим произвольный стержень круглого поперечного сечения.

Выделим кольцеобразный малый элемент, а из него в свою очередь элемент m, npо который в пределе можно считать плоским. Данный элемент содержит точку, напряженное состояние которой мы исследуем. Полярный радиус исследуемой точки .

Основываясь на первом принятом допущении, заключаем, что элемент mnpq испытывает чистый сдвиг.

Рассмотрим геометрическую сторону задачи.

При кручении поперечные сечения, между которыми заключен элемент повернутся друг относительно друга на малый угол d . Очевидно, что угол сдвига будет равен .

Величину называем относительным углом закручивания. Тогда (11).

Рассмотрим физическую сторону задачи. Будем полагать материал линейно упругим и примем закон Гука (12).

Подставим (1) в (2): (13).

Мы видим, что касательные напряжения по радиусу меняются линейно, но величина Q нам еще не известна.

Обратимся к статической стороне задачи и рассмотрим равновесие отсеченной части стержня

Интеграл - полярный момент инерции.

В результате получаем так называемую основную зависимость при кручении (14)

Величина называется жесткостью при кручении.

Подставим (14) в (13) и получим закон распределения касательных напряжений (15)

Как мы выяснили ранее, закон распределения напряжений линейных и наибольшие касательные напряжения возникают на контуре сечения при (16)

Где полярный момент сопротивления.

Выразим и через диаметр

 

Само собой, что закон распределения касательных напряжений осесимметричный и по каждому из радиусов напряжения распределяются одинаково.

Формула (6) дает возможность рассчитывать на прочность стержни, работающие на кручение, которые называют валами.

Условия прочности при кручении выглядит:

где [ -допускаемое напряжение на кручение.

Может стоять задача определения коэффициента запаса по текучести. Тогда , где предел текучести при кручении.

 

При кручении возникают угловые перемещения.

- угол взаимного поворота сечений, т.е. угол на который повернутся два каких-либо сечения друг относительно друга. Пусть у стержня одно сечение заделано, а на конце приложен момент. Очевидно, что крутящий момент по длине меняться не будет

На основании (4) имеем (17)

Если, как это имеет место в нашем случае, то (18) Угол закручивания определяем на всей длине l. Расчет на жесткость заключается в ограничении углов закручивания. , где - допускаемый угол закручивания, задаваемый обычно на длине 1м.

 

24. Прямой изгиб. Поперечная сила Q и изгибающий мо­мент М. Эпюры поперечных сил Q и изгибающих моментов М.

Если на стержень действуют силы перпендикулярные оси, то такое нагружение называется изгибом. Первоначально прямая ось искривляется. Мы будем рассматривать в этой лекции случай, когда силы лежат в одной плоскости. Изгиб называется чистым изгибом, если в поперечных сечениях возникает лишь один внутренний силовой фактор – изгибающий момент.

Если помимо изгибающих моментов возникают еще и поперечные силы, то изгиб называется поперечным.

Стержень, работающий на изгиб называется балками.

Поперечная сила Q – это алгебраическая сумма всех сил, действующих относительно рассматриваемого сечения.

Изгибающий момент М – это алгебраическая сумма всех изгибающих моментов, действующих относительно рассматриваемого сечения.

Эпюры поперечных сил и изгибающих моментов – это графики распределения поперечных сил и изгибающих моментов по длине бруса.


Поделиться:



Популярное:

  1. A.16.15.3. Экран принудительной изоляции для использования в депо
  2. Cинтетический учет поступления основных средств, в зависимости от направления приобретения
  3. Cмыкание с декоративно-прикладным искусством
  4. E) Ценность, приносящая доход, депозит.
  5. F) объема производства при отсутствии циклической безработицы
  6. F) показывает, во сколько раз увеличивается денежная масса при прохождении через банковскую систему
  7. F)по критерию максимизации прироста чистой рентабельности собственного капитала
  8. G) осуществляется за счет привлечения дополнительных ресурсов
  9. H) Такая фаза круговорота, где устанавливаются количественные соотношения, прежде всего при производстве разных благ в соответствии с видами человеческих потребностей.
  10. H)результатов неэффективной финансовой политики по привлечению капитала и заемных средств
  11. I HAVE A STRANGE VISITOR (я принимаю странного посетителя)
  12. I MAKE A LONG JOURNEY (я предпринимаю длинное путешествие)


Последнее изменение этой страницы: 2016-07-13; Просмотров: 1212; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.017 с.)
Главная | Случайная страница | Обратная связь