Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Устройства DSU/CSU для подключения к выделенному каналу



Связь компьютера или маршрутизатора с цифровой выделенной линией осуществляется с помощью пары устройств, обычно выполненных в одном корпусе или же совмещенных с маршрутизатором. Этими устройствами являются: устройство обслуживания данных (УОД) и устройство обслуживания канала (УОК). В англоязычной литературе эти устройства называются соответственно Data Service Unit (DSU) и Channel Service Unit (CSU). DSU преобразует сигналы, поступающие от DTE (обычно по интерфейсу RS-232C, RS-449 или V.35). DSU выполняет всю синхронизацию, формирует кадры каналов Т1/Е1, усиливает сигнал и осуществляет выравнивание загрузки канала. CSU выполняет более узкие функции, в основном это устройство занимается созданием оптимальных условий передачи в линии. Эти устройства, как и модуляторы-демодуляторы, часто обозначаются одним словом DSU/CSU (рис. 6.12).

Рис. 6.12. Использование DSU/CSU для подключения к цифровой выделенной линии

Нередко под устройством DSU/CSU понимают более сложные устройства, которые кроме согласования интерфейсов выполняют функции мультиплексора Т1/Е1. В состав такого устройства может входит модуль мультиплексирования низкоскоростных потоков голоса и данных в канал 64 Кбит/с или в несколько таких каналов (голос при этом обычно компрессируется до скорости 8-16 Кбит/с).

Протоколы канального уровня для выделенных линий

Выделенные каналы используются для прямой связи между собой локальных сетей или отдельных компьютеров. Для маршрутизатора или моста выделенная линия предоставляет чаще всего либо канал с известной полосой пропускания, как в случае выделенных аналоговых линий, либо канал с известным протоколом физического уровня, как в случае цифровых выделенных каналов. Правда, так как аналоговый канал требует модема для передачи данных, протокол физического уровня также определен для этой линии - это протокол модема. Поэтому для передачи данных между маршрутизаторами, мостами или отдельными компьютерами с помощью выделенного канала необходимо решить, какие протоколы уровней выше физического необходимы для передачи сообщений с нужной степенью надежности и с возможностями управления потоком кадров для предотвращения переполнения соседних узлов.

Если выделенный канал соединяет сети через маршрутизаторы, то протокол сетевого уровня определен, а протокол канального уровня маршрутизатор может использовать любой, в том числе и протокол канального уровня локальной сети, например Ethernet. Мост должен передавать кадры канального протокола из одной локальной сети в другую, при этом ему тоже можно непосредственно использовать протокол локальной сети (Ethernet, Token Ring, FDDI) поверх физического уровня канала.

Однако ни мосты, ни маршрутизаторы на выделенных каналах с протоколами канального уровня локальных сетей не работают. Они, с одной стороны, избыточны, а с другой стороны, в них отсутствуют некоторые необходимые процедуры, очень полезные при объединении сетей по глобальному выделенному каналу.

Избыточность проявляется в процедурах получения доступа к разделяемой среде, а так как выделенная линия постоянно находится в распоряжении соединяющихся с ее помощью конечных узлов, процедура получения доступа к ней не имеет смысла. Среди отсутствующих процедур можно назвать процедуру управления потоком данных, процедуру взаимной аутентификации удаленных устройств, что часто необходимо для защиты сети от «подставного» маршрутизатора или моста, отводящего корпоративный трафик не по назначению. Кроме того, существует ряд параметров, которые полезно автоматически согласовывать при удаленном взаимодействии, - например, максимальный размер поля данных (MTU), IP-адрес партнера (как для безопасности, так и для автоматического конфигурирования стека TCP/IP на удаленных одиночных компьютерах).

Протокол SLIP

Протокол SLIP (Serial Line IP) был первым стандартом де-факто, позволяющим устройствам, соединенным последовательной линией связи, работать по протоколам TCP/IP. Он был создан в начале 80-х годов и в 1984 году встроен Риком Адамсом (Rick Adams) в операционную систему 4.2 Berkley Unix. Позднее SLIP был поддержан в других версиях Unix и реализован в программном обеспечении для ПК.

Правда, ввиду его функциональной простоты, SLIP использовался и используется в основном на коммутируемых линиях связи, которые не характерны для ответственных и скоростных сетевых соединений. Тем не менее коммутируемый канал отличается от некоммутируемого только более низким качеством и необходимостью выполнять процедуру вызова абонента, поэтому SLIP вполне применим и на выделенных каналах.

Протокол SLIP выполняет единственную функцию - он позволяет в потоке бит, которые поступают по выделенному (или коммутируемому) каналу, распознать начало и конец IP-пакета. Помимо протокола IP, другие протоколы сетевого уровня SLIP не поддерживает.

Чтобы распознать границы IP-пакетов, протокол SLIP предусматривает использование специального символа END, значение которого в шестнадцатеричном представлении равно С0. Применение специального символа может породить конфликт: если байт пересылаемых данных тождественен символу END, то он будет ошибочно определен как признак конца пакета. Чтобы предотвратить такую ситуацию, байт данных со значением, равным значению символа END, заменяется составной двухбайтовой последовательностью, состоящей из специального символа ESC (DB) и кода DC. Если же байт данных имеет тот же код, что и символ SLIP ESC, то он заменяется двухбайтовой последовательностью, состоящей из собственно символа SLIP ESC и кода DD. После последнего байта пакета передается символ END.

Механизм формирования составных последовательностей показан на рис. 6.13. Здесь приведены стандартный IP-пакет (один байт которого тождественен символу END, а другой - символу SLIP ESC) и соответствующий ему SLIP-пакет, который больше на 4 байта.

Рис. 6.13. Инкапсуляция IP-пакетов в SLIP-пакеты

Хотя в спецификации протокола SLIP не определена максимальная длина передаваемого пакета, реальный размер IP-пакета не должен превышать 1006 байт. Данное ограничение связано с первой реализацией протокола SLIP в соответствующем драйвере для Berkley Unix, и его соблюдение необходимо для поддержки совместимости разных реализации SLIP (большинство современных реализации позволяют администратору самому установить размер пакета, а по умолчанию используют размер 1500 байт).

Для установления связи по протоколу SLIP компьютеры должны иметь информацию об IP-адресах друг друга. Однако возможна ситуация, когда, скажем, при осуществлении соединения между хостом и маршрутизатором последнему понадобится передать хосту информацию о его IP-адресе. В протоколе SLIP нет механизмов, дающих возможность обмениваться адресной информацией. Это ограничение не позволяет использовать SLIP для некоторых видов сетевых служб.

Другой недостаток SLIP - отсутствие индикации типа протокола, пакет которого инкапсулируется в SLIP-пакет. Поэтому через последовательную линию по протоколу SLIP можно передавать трафик лишь одного сетевого протокола - IP.

При работе с реальными телефонными линиями, зашумленными и поэтому искажающими пакеты при пересылке, требуются процедуры обнаружения и коррекции ошибок. В протоколе SLIP такие процедуры не предусмотрены. Эти функции обеспечивают вышележащие протоколы: протокол IP проводит тестирование целостности пакета по заголовку IP, а один из двух транспортных протоколов (UDP или TCP) проверяет целостность всех данных по контрольным суммам.

Низкая пропускная способность последовательных линий связи вынуждает сокращать время передачи пакетов, уменьшая объем содержащейся в них служебной информации. Эта задача решается с помощью протокола Compressed SLIP (CSLIP), поддерживающего сжатие заголовков пакетов. Появление CSLIP объясняется тем фактом, что при использовании программ типа Telnet, Riogin и других для пересылки одного байта данных требуется переслать 20-байтовый заголовок IP-пакета и 20-байтовый заголовок TCP-пакета (итого 40 байт). Спецификация CSLIP обеспечивает сжатие 40-байтового заголовка до 3-5 байт. На сегодняшний момент большинство реализации протокола SLIP поддерживают спецификацию CSLIP.

Таким образом, протокол SLIP выполняет работу по выделению из последовательности передаваемых по последовательному каналу бит границ IP-пакета. Протокол не имеет механизмов передачи адресной информации, идентификации типа протокола сетевого уровня, определения и коррекции ошибок.

Протоколы семейства HDLC

Долгое время основным протоколом выделенных линий был протокол HDLC (High-level Data Link Control), имеющий статус стандарта ISO. Протокол HDLC на самом деле представляет собой семейство протоколов, в которое входят известные протоколы: LAP-B, образующий канальный уровень сетей Х.25, LAP-D - канальный уровень сетей ISDN, LAP-M - канальный уровень асинхронно-синхронных модемов, LAP-F - канальный уровень сетей frame relay.

Основные принципы работы протокола HDLC: режим логического соединения, контроль искаженных и потерянных кадров с помощью метода скользящего окна, управление потоком кадров с помощью команд RNR и RR, а также различные типы кадров этого протокола были уже рассмотрены в главе 3 при изучении еще одного представителя семейства HDLC - протокола LLC2.

Однако сегодня протокол HDLC на выделенных каналах вытеснил протокол «точка-точкам», Point-to-Point Protocol, PPP.

Дело в том, что одна из основных функций протокола HDLC - это восстановление искаженных и утерянных кадров. Действительно, применение протокола HDLC обеспечивает снижение вероятности искажения бита (BER) с 10-3, что характерно для территориальных аналоговых каналов, до 10-9.

Однако сегодня популярны цифровые каналы, которые и без внешних процедур восстановления кадров обладают высоким качеством (величина BER составляет10-8-10-9). Для работы по такому каналу восстановительные функции протокола HDLC не нужны. При передаче по аналоговым выделенным каналам современные модемы сами применяют протоколы семейства HDLC (синхронные модемы - HDLC, а асинхронно-синхронные с асинхронным интерфейсом - LAP-M, который также принадлежит семейству HDLC). Поэтому использование HDLC на уровне маршрутизатора или моста становится неоправданным.

Протокол PPP

Этот протокол разработан группой IETF (Internet Engineering Task Force) как часть стека TCP/IP для передачи кадров информации по последовательным глобальным каналам связи взамен устаревшего протокола SLIP (Serial Line IP). Протокол PPP стал фактическим стандартом для глобальных линий связи при соединении удаленных клиентов с серверами и для образования соединений между маршрутизаторами в корпоративной сети. При разработке протокола PPP за основу был взят формат кадров HDLC и дополнен собственными полями. Поля протокола PPP вложены в поле данных кадра HDLC. Позже были разработаны стандарты, использующие вложение кадра PPP в кадры frame relay и других протоколов глобальных сетей.

Основное отличие РРР от других протоколов канального уровня состоит в том, что он добивается согласованной работы различных устройств с помощью переговорной процедуры, во время которой передаются различные параметры, такие как качество линии, протокол аутентификации и инкапсулируемые протоколы сетевого уровня. Переговорная процедура происходит во время установления соединения.

Протокол РРР основан на четырех принципах: переговорное принятие параметров соединения, многопротокольная поддержка, расширяемость протокола, независимость от глобальных служб.

Переговорное принятие параметров соединения. В корпоративной сети конечные системы часто отличаются размерами буферов для временного хранения пакетов, ограничениями на размер пакета, списком поддерживаемых протоколов сетевого уровня. Физическая линия, связывающая конечные устройства, может варьироваться от низкоскоростной аналоговой линии до высокоскоростной цифровой линии с различными уровнями качества обслуживания.

Чтобы справиться со всеми возможными ситуациями, в протоколе РРР имеется набор стандартных установок, действующих по умолчанию и учитывающих все стандартные конфигурации. При установлении соединения два взаимодействующих устройства для нахождения взаимопонимания пытаются сначала использовать эти установки. Каждый конечный узел описывает свои возможности и требования. Затем на основании этой информации принимаются параметры соединения, устраивающие обе стороны, в которые входят форматы инкапсуляции данных, размеры пакетов, качество линии и процедура аутентификации.

Протокол, в соответствии с которым принимаются параметры соединения, называется протоколом управления связью (Link Control Protocol, LCP). Протокол, который позволяет конечным узлам договориться о том, какие сетевые протоколы будут передаваться в установленном соединении, называется протоколом управления сетевым уровнем (Network Control Protocol, NCP). Внутри одного РРР - соединения могут передаваться потоки данных различных сетевых протоколов.

Одним из важных параметров РРР - соединения является режим аутентификации. Для целей аутентификации РРР предлагает по умолчанию протокол РАР (Password Authentication Protocol), передающий пароль по линии связи в открытом виде, или протокол CHAP (Challenge Handshake Authentication Protocol), не передающий пароль по линии связи и поэтому обеспечивающий большую безопасность сети. Пользователям также разрешается добавлять и новые алгоритмы аутентификации. Дисциплина выбора алгоритмов компрессии заголовка и данных аналогична.

Многопротокольная поддержка - способность протокола РРР поддерживать несколько протоколов сетевого уровня - обусловила распространение РРР как стандарта де-факто. В отличие от протокола SLIP, который может переносить только IP-пакеты, или LAP-B, который может переносить только пакеты Х.25, РРР работает со многими протоколами сетевого уровня, включая IP, Novell IPX, AppleTalk, DECnet, XNS, Banyan VINES и OSI, а также протоколами канального уровня локальной сети. Каждый протокол сетевого уровня конфигурируется отдельно с помощью соответствующего протокола NCP. Под конфигурированием понимается, во-первых, констатация того факта, что данный протокол будет использоваться в текущей сессии РРР, а во-вторых, переговорное утверждение некоторых параметров протокола. Больше всего параметров устанавливается для протокола IP - IP-адрес узла, IP-адрес серверов DNS, использование компрессии заголовка IP-пакета и т. д. Протоколы конфигурирования параметров соответствующего протокола верхнего уровня называются по имени этого протокола с добавлением аббревиатуры СР (Control Protocol), например протокол IPCP, IPXCP и т. п.

Расширяемость протокола. Под расширяемостью понимается как возможность включения новых протоколов в стек РРР, так и возможность использования собственных протоколов пользователей вместо рекомендуемых в РРР по умолчанию. Это позволяет наилучшим образом настроить РРР для каждой конкретной ситуации.

Независимость от глобальных служб. Начальная версия РРР работала только с кадрами HDLC. Теперь в стек РРР добавлены спецификации, позволяющие использовать РРР в любой технологии глобальных сетей, например ISDN, frame relay, Х.25, Sonet и HDLC.

Переговорная процедура протоколов LCP и NCP может и не завершиться соглашением о каком-нибудь параметре. Если, например, один узел предлагает в качестве MTU значение 1000 байт, а другой отвергает это предложение и в свою очередь предлагает значение 1500 байт, которое отвергается первым узлом, то по истечении тайм-аута переговорная процедура может закончиться безрезультатно.

Возникает вопрос - каким образом два устройства, ведущих переговоры по протоколу РРР, узнают о тех параметрах, которые они предлагают своему партнеру? Обычно у реализации протокола РРР есть некоторый набор параметров по умолчанию, которые и используются в переговорах. Тем не менее каждое устройство (и программа, реализующая протокол РРР в операционной системе компьютера) позволяет администратору изменить параметры по умолчанию, а также задать параметры, которые не входят в стандартный набор. Например, IP-адрес для удаленного узла отсутствует в параметрах по умолчанию, но администратор может задать его для сервера удаленного доступа, после чего сервер будет предлагать его удаленному узлу.

Хотя протокол РРР и работает с кадром HDLC, но в нем отсутствуют процедуры контроля кадров и управления потоком протокола HDLC. Поэтому в РРР используется только один тип кадра HDLC - ненумерованный информационный. В поле управления такого кадра всегда содержится величина 03. Для исправления очень редких ошибок, возникающих в канале, необходимы протоколы верхних уровней - TCP, SPX, NetBUEl, NCP и т. п.

Одной из возможностей протокола РРР является использование нескольких физических линий для образования одного логического канала, так называемый транкинг каналов. Эту возможность реализует дополнительный протокол, который носит название MLPPP (Multi Link РРР). Многие производители поддерживают такое свойство в своих маршрутизаторах и серверах удаленного доступа фирменным способом. Использование стандартного способа всегда лучше, так как он гарантирует совместимость оборудования разных производителей.

Общий логический канал может состоять из каналов разной физической природы. Например, один канал может быть образован в телефонной сети, а другой может являться виртуальным коммутируемым каналов сети frame relay.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-07-14; Просмотров: 1363; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.029 с.)
Главная | Случайная страница | Обратная связь