Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Ассоциативность памяти и задача распознавания образов



Динамический процесс последовательной смены состояний нейронной сети Хопфилда завершается в некотором стационарном состоянии, являющемся локальным минимумом энергетической функции E( S ). Невозрастание энергии в процессе динамики приводит к выбору такого локального минимума S, в бассейн притяжения которого попадает начальное состояние (исходный, пред'являемый сети образ) S0. В этом случае также говорят, что состояние S0 находится в чаше минимума S.

При последовательной динамике в качестве стационарного состояния будет выбран такой образ S, который потребует минимального числа изменений состояний отдельных нейронов. Поскольку для двух двоичных векторов минимальное число изменений компонент, переводящее один вектор в другой, является расстоянием Хемминга r H( S, S0 ), то можно заключить, что динамика сети заканчивается в ближайшем по Хеммингу локальном минимуме энергии.

Пусть состояние S соответствует некоторому идеальному образу памяти. Тогда эволюцию от состояния S0 к состоянию S можно сравнить с процедурой постепенного восстановления идеального образа S по его искаженной (зашумленной или неполной) копии S0. Память с такими свойствами процесса считывания информации является ассоциативной. При поиске искаженные части целого восстанавливаются по имеющимся неискаженным частям на основе ассоциативных связей между ними.

Ассоциативный характер памяти сети Хопфилда качественно отличает ее от обычной, адресной, компьютерной памяти. В последней извлечение необходимой информации происходит по адресу ее начальной точки (ячейки памяти). Потеря адреса (или даже отного бита адреса) приводит к потере доступа ко всему информационному фрагменту. При использовании ассоциативной памяти доступ к информации производится непосредственно по ее содержанию, т.е. по частично известным искаженным фрагментам. Потеря части информации или ее информационное зашумление не приводит к катастрофическому ограничению доступа, если оставшейся информации достаточно для извлечения идеального образа.

Поиск идеального образа по имеющейся неполной или зашумленной его версии называется задачей распознавания образов. В нашей лекции особенности решения этой задачи нейронной сетью Хопфилда будут продемонстрированы на примерах, которые получены с использованием модели сети на персональной ЭВМ.

В рассматриваемой модели сеть содержала 100 нейронов, упорядоченных в матрицу 10 x 10. Сеть обучалась по правилу Хебба на трех идеальных образах - шрифтовых начертаниях латинских букв M, A и G (Рис. 8.3.). После обучения нейросети в качестве начальных состояний нейронов пред'являлись различные искаженные версии образов, которые в дальнейшем эволюционировали с последовательной динамикой к стационарным состояниям.

Рис. 8.3. Идеальные образы обучающей выборки. Темные квадратики соответствуют нейронам в состоянии +1, светлые -1.

Для каждой пары изображений на рисунках этой страницы, левый образ является начальным состоянием, а правый - результатом работы сети - достигнутым стационарным состоянием.

Рис. 8.4. (A) - Один из идеальных образов является стационарной точкой. (Б) - Образ, заданный другим шрифтом, удачно распознается.

Рис. 8.5. (A, Б) - Образы с информационным шумом удачно распознаются.

Рис. 8.6. Образ может быть распознан по небольшому фрагменту.

Рис. 8.7. (A) - Пример релаксации к ложному образу. (Б) - Добавление информации к левой картинке (А) приводит к правильному распознаванию.

Образ на Рис. 8.4.(А) был выбран для тестирования адекватности поведения на идеальной задаче, когда пред'явленное изображение точно соотвествует информации в памяти. В этом случае за один шаг было достигнуто стационарное состояние. Образ на Рис. 8.4.(Б) характерен для задач распознавания текста независимо от типа шрифта. Начальное и конечное изображения безусловно похожи, но попробуйте это об'яснить машине!

Задания на Рис. 8.5 характерны для практических приложений. Нейросетевая система способна распознавать практически полностью зашумленные образы. Задачи, соответствующие Рис. 8.6. и 8.7.(Б), демонстрируют замечательное свойство сети Хопфилда ассоциативно узнавать образ по его небольшому фрагменту. Важнейшей особенностью работы сети является генерация ложных образов. Пример релаксации к ложному образу показан на Рис. 8.7.(А). Ложный образ является устойчивым локальным экстремумом энергии, но не соответствует никакому идеальному образу. Он является в некотором смысле собирательным образом, наследующим черты идеальных собратьев. Ситуация с ложным образом эквивалентна нашему " Где-то я уже это видел".

В данной простейшей задаче ложный образ является " неверным" решением, и поэтому вреден. Однако, можно надеяться, что такая склонность сети к обобщениям наверняка может быть использована. Характерно, что при увеличении об'ема полезной информации (сравните Рис. 8.7.(А) и (Б)), исходное состояние попадает в область притяжения требуемого стационарного состояния, и образ распознается.

Несмотря на интересные качества, нейронная сеть в классической модели Хопфилда далека от совершенства. Она обладает относительно скромным об'емом памяти, пропорциональным числу нейронов сети N, в то время как системы адресной памяти могут хранить до 2N различных образов, используя N битов. Кроме того, нейронные сети Хопфилда не могут решить задачу распознавания, если изображение смещено или повернуто относительно его исходного запомненного состояния. Эти и другие недостатки сегодня определяют общее отношение к модели Хопфилда, скорее как к теоретическому построению, удобному для исследований, чем как повседневно используемому практическому средству.

На следующих лекциях мы рассмотрим развитие модели Хопфилда, модификации правила Хебба, увеличивающие об'ем памяти, а также приложения вероятностных обобщений модели Хопфилда к задачам комбинаторной оптимизации.

ПРИЛОЖЕНИЕ 1. Компьютерное моделирование нейросетей.

Принципы разработки программного обеспечения, выполняющего имитационное моделирование нейросетей. Структура и функции блоков программы. Пример программной реализации алгоритма обучения персептрона.

Значительная доля всех приложений нейронных сетей приходится на использование их программных моделей, обычно называемых нейроимитаторами. Разработка программы обычно стоит дешевле, а получаемый продукт представляется более наглядным, мобильным и удобным, нежели специализированная аппаратура. В любом случае, разработке аппаратной реализации нейросети всегда должна предшествовать ее всесторонняя отработка на основе теории с использованием компьютерной модели.

В этом разделе книги описываются наиболее общие принципы разработки относительно небольших нейропрограмм, обычно индивидуального использования. С целью максимального упрощения изложения выбрана простая архитектура нейронной сети - однослойный ПЕРСЕПТРОН. Теоретические основы этой сети были рассмотрены в четвертой лекции.

В завершении раздела приведены полные листинги описываемых программ, которые читатель, знакомый с программированием на ТУРБО ПАСКАЛЕ для персонального компьютера IBM PC, может использовать в учебных целях и модифицировать по своему желанию.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-07-14; Просмотров: 666; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.015 с.)
Главная | Случайная страница | Обратная связь