Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


МАГНИТНОЕ ПОЛЕ КОНТУРА С ТОКОМ. МАГНИТНЫЙ МОМЕНТ.



Выясним, как ведет себя контур с током в магнитном поле. Начнем со случая, когда поле однородно (B=const). На элемент контура d\ действует сила (46.1) Результирующая таких сил равна (46.2) Вынеся постоянные величины / и В за знак интеграла, получим Интеграл равен нулю, поэтому F=0. Таким образом, резуль-

тирующая сила, действующая на контур с током в однородном магнитном поле, равна нулю. Действительно, результирующий момент относительно некоторой точки О определяется

выражением где г — радиус-вектор, проведенный из точки О в точку приложения силы

Магнитный момент - основная величина, характеризующая магнитные свойства вещества. Источником магнетизма, согласно классической теории электромагнитных явлений, являются электрические макро- и микротоки. Элементарным источником магнетизма считают замкнутый ток. Из опыта и классической теории электромагнитного поля следует, что магнитные действия замкнутого тока (контура с током) определены, если известно произведение (М) силы тока i на площадь контура s. Вектор М и есть, по определению, М. м. Его можно записать и в иной форме: М = m l, где m — эквивалентный магнитный заряд контура, а l — расстояние между «зарядами» противоположных знаков (+ и -). Для произвольного замкнутого контура магнитный момент находится из: где — радиус-вектор проведенный из начала координат до элемента длины контура .

 

ТЕОРЕМА О ЦИРКУЛЯЦИИ ВЕКТОРА ИНДУКЦИИ ПОЛЯ.

Расчеты магнитного поля токов часто упрощаются при учете симметрии в конфигурации токов, создающих поле. В этом случае расчеты можно выполнять с помощью теоремы о циркуляции вектора магнитной индукции, которая в теории магнитного поля токов играет ту же роль, что и теорема Гаусса в электростатике. Поясним понятие циркуляции вектора Пусть в пространстве, где создано магнитное поле, выбран некоторый условный замкнутый контур (не обязательно плоский) и указано положительное направление обхода контура. На каждом отдельном малом участке Δ l этого контура можно определить касательную составляющую вектора в данном месте, то есть определить проекцию вектора на направление касательной к данному участку контура (рис. 1.17.2). Циркуляцией вектора называют сумму произведений Δ l, взятую по всему контуру L: Теорема о циркуляции утверждает, что циркуляция вектора магнитного поля постоянных токов по любому контуру L всегда равна произведению магнитной постоянной μ 0 на сумму всех токов, пронизывающих контур:

Теорема Гаусса для магнитной индукции. Поток вектора магнитной индукции через любую замкнутую поверхность равен нулю: Это эквивалентно тому, что в природе не существует «магнитных зарядов» (монополей), которые создавали бы магнитное поле, как электрические заряды создают электрическое поле. Иными словами, теорема Гаусса для магнитной индукции показывает, что магнитное поле является вихревым.

 

ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ.

. Магнитное поле, подобно электрическому, является носителем энергии. Естественно предположить, что энергия магнитного поля равна работе, которая затра­чивается током на создание этого поля.

Рассмотрим контур индуктивностью L, по которому течет ток I. С данным кон­туром сцеплен магнитный поток (см. (126.1)) Ф=LI, причем при изменении тока на dI магнитный поток изменяется на dФ=LdI. Однако для изменения магнитного потока на величину dФ (см. § 121) необходимо совершить работу dА=I=LIdI. Тогда работа по созданию магнитного потока Ф будет равна

Следовательно, энергия магнитного поля, связанного с контуром,

Магнитное поле соленоида однородно и сосредоточено внутри него, поэтому энергия (см. (130.2)) заключена в объеме соленоида и распределена в нем с постоянной объемной плотностью

(130.3). Выражение (130.3) для объемной плотности энергии магнитного поля имеет вид, аналогичный формуле (95.8) для объемной плотности энергии электростатического поля, с той разницей, что электрические величины заменены в нем магнитными. Формула (130.3) выведена для однородного поля, но она справедлива и для неоднород­ных полей. Выражение (130.3) справедливо только для сред, для которых зависимость В от Н линейная, т.е. оно относится только к пара- и диамагнетикам.

СИЛА АМПЕРА И СИЛА ЛОРЕНЦА.

Сила Ампера — сила, с которой магнитное поле действует на проводник с током. Из закона Ампера следует, что параллельные проводники с постоянными токами, текущими в одном направлении, притягиваются, а в противоположном — отталкиваются. Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током.

Сила , с которой магнитное поле действует на элемент проводника с током, находящегося в магнитном поле, прямо пропорциональна силе тока I в проводнике и векторному произведению элемента длины проводника на магнитную индукцию :

Направление силы определяется по правилу вычисления векторного произведения, которое удобно запомнить при помощи правила левой руки. Модуль силы Ампера можно найти по формуле: , где α — угол между векторами магнитной индукции и тока.

Сила, действующая на электрический заряд Q, движущийся в магнитном поле со скоростью v, называется силой Лоренца и выражается формулой (114.1) где В — индукция магнитного поля, в котором заряд движется. Сила, действующая на электрический заряд Q, движущийся в магнитном поле со скоростью v, называется силой Лоренца и выражается формулой (114.1) где В — индукция магнитного поля, в котором заряд движется. Модуль силы Лоренца равен где a — угол между v и В.

Если заряженная частица движется в магнитном поле со скоростью v, перпен­дикулярной вектору В, то сила Лоренца F =Q[ vB ] постоянна по модулю и нормальна к траектории частицы. Согласно второму закону Ньютона, эта сила создает центро­стремительное ускорение. Отсюда следует, что частица будет двигаться по окружности, радиус r которой определяется из условия QvB=mv2/r откуда (115.1) Период вращения частицы, т. е. время Т, за которое она совершает один полный оборот, Подставив сюда выражение (115.1), получим (115.2) т. е. период вращения частицы в однородном магнитном поле определяется только величиной, обратной удельному заряду (Q/m) частицы, и магнитной индукцией поля, но не зависит от ее скорости (при v< < c). Если скорость v заряженной частицы составляет угол a с направлением векто­ра В неоднородного магнитного поля, индукция которого возрастает в направлении движения частицы, то r и h уменьшаются с ростом В. На этом основана фокусировка заряженных частиц в магнитном поле.

 


Поделиться:



Популярное:

  1. I. 20. Учет, картирование и прогнозирование засоренности полей.
  2. Акробатика с фазой полета (Airborne Tumbling skill)
  3. Аллопатическая медицина располагает арсеналом совершенно бесполезных и опасных для здоровья населения лекарственных препаратов
  4. Анализ потенциальных опасностей и вредностей при выполнении проектируемых работ, переездах, быте и отдыхе в полевых условиях
  5. Б. Полезные или вредные эманации
  6. Баланс гумуса в полевом и кормовом севооборотах
  7. Быстрый полет вплотную к неровностям рельефа
  8. В поле консервативных сил сумма кинетической и потенциальной энергии материальной точки остается постоянной, т.е. сохраняется.
  9. Векторное поле и его характеристики: векторные линии, ротор, дивергенция.
  10. ВИХРЕВОЕ ЭЛЕКТРИЧЕСКОЕ ПОЛЕ.
  11. Вопрос. Электрическое поле и его характеристика. Напряженность, потенциал, разность потенциалов.
  12. Государственный баланс запасов полезных ископаемых


Последнее изменение этой страницы: 2016-08-24; Просмотров: 756; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.014 с.)
Главная | Случайная страница | Обратная связь