|
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Всемирный закон тяготения. Сила тяжести и вес тела.
Между любыми двумя материальными точками действуют силы взаимного притяжения, прямо пропорциональные произведению масс этих точек и обратно пропорциональные квадрату расстояния между ними F12 = g (m1m2/R2) R12/R, где F12 - сила тяготения, действующая на точку с массой m1, R12 - радиус-вектор, проведенный из этой точки в точку, обладающую массой m2, R = |R12| - расстояние между точками. Коэффициент g называется гравитационной постоянной (постоянной тяготения). Он численно равен силе взаимного притяжения между двумя материальными точками, которые обладают одинаковыми массами, равными единице массы, и находятся друг от друга на расстоянии, равном единице длины. Гравитационная постоянная определяется опытным путем. Ее численное значение зависит только от выбора системы единиц измерения: g = 6.67*10-11 Н*м2/кг2 = g = 6.67*10-8 дин*см2/г2 По третьему закону Ньютона сила F21 действующая па материальную точку с массой m2 численно равна силе F12, но направлена в противоположную сторону: F12 = - F21 Весом тела называется сила Р, с которой неподвижное относительно Земли тело давит на опору вследствие притяжения его к Земле. Вес тела равен векторной разности силы F тяготения тела к Земле и центростремительной силы Fц обусловливающей участие тела в суточном вращении Земли: P = F – Fц причем Fц = mw2 Rcos f, где m - масса тела, w - угловая скорость суточного вращения Земли, R - радиус Земли, а f - географическая широта места наблюдения А. Одним из проявлений силы всемирного тяготения является сила тяжести. Так принято называть силу притяжения тел к Земле вблизи ее поверхности. Если М – масса Земли, RЗ – ее радиус, m – масса данного тела, то сила тяжести равна
Упругие силы. Модуль Юнга. При деформации тела возникает сила, которая стремится восстановить прежние размеры и форму тела. Эта сила возникает вследствие электромагнитного взаимодействия между атомами и молекулами вещества. Ее называют силой упругости. Простейшим видом деформации является деформация растяжения или сжатия. При малых деформациях (|x| < < l) сила упругости пропорциональна деформации тела и направлена в сторону, противоположную направлению перемещения частиц тела при деформации: Fx = Fупр = –kx. Это соотношение выражает экспериментально установленный закон Гука. Коэффициент k называется жесткостью тела. В физике закон Гука для деформации растяжения или сжатия принято записывать в другой форме. Отношение ε = x / l называется относительной деформацией, а отношение σ = F / S = –Fупр / S, где S – площадь поперечного сечения деформированного тела, называется напряжением. Тогда закон Гука можно сформулировать так: относительная деформация ε пропорциональна напряжению σ: 6. Теорема об изменении импульса тела и системы. Закон сохранения импульса.
Рассмотрим механическую систему, состоящую из n тел, масса и скорость которых соответственно равны m1, m2, .... mn, и v1, v2,..., vn. Пусть Складывая почленно эти уравнения, получаем
Но так как геометрическая сумма внутренних сил механической системы по третьему закону Ньютона равна нулю, то
или
7. Центр масс механической системы. В механике Галилея—Ньютона из-за независимости массы от скорости импульс системы может быть выражен через скорость ее центра масс. Центром масс (или центром инерции) системы материальных точек называется воображаемая точка С, положение которой характеризует распределение массы этой системы. Ее радиус-вектор равен Учитывая, что pi = mivi, a Подставив выражение в уравнение, получим Из закона сохранения импульса вытекает, что центр масс замкнутой системы либо движется прямолинейно и равномерно, либо остается неподвижным. 8. Уравнение движения тела переменной массы. Уравнение Циолковского. Движение некоторых тел сопровождается изменением их массы, например масса ракеты уменьшается вследствие истечения газов, образующихся при сгорании топлива, и т. п. Выведем уравнение движения тела переменной массы на примере движения ракеты. Если в момент времени t масса ракеты m, а ее скорость v, то по истечении времени dt ее масса уменьшится на dm и станет равной т — dm, а скорость станет равной v + dv. Изменение импульса системы за отрезок времени dt (учли, что dmdv — малый высшего порядка малости по сравнению с остальными). Если на систему действуют внешние силы, то dp=Fdt, поэтому Полагая F=0 и считая, что скорость выбрасываемых газов относительно ракеты постоянна (ракета движется прямолинейно), получим Значение постоянной интегрирования С определим из начальных условий. Если в начальный момент времени скорость ракеты равна нулю, а ее стартовая масса m0, то С = u ln(m0). Следовательно, v = u ln (m0/m). Это соотношение называется формулой Циолковского. Она показывает, что: 1) чем больше конечная масса ракеты т, тем больше должна быть стартовая масса ракеты m0; 2) чем больше скорость истечения и газов, тем больше может быть конечная масса при данной стартовой массе ракеты.
9. Работа и мощность. Кинетическая энергия. Изменение механического движения тела вызывается силами, действующими на него со стороны других тел. Чтобы количественно характеризовать процесс обмена энергией между взаимодействующими телами, в механике вводится понятие работы силы. Если тело движется прямолинейно и на него действует постоянная сила F, которая составляет некоторый угол с направлением перемещения, то работа этой силы равна произведению проекции силы Fs на направление перемещения (Fs= Fcos ), умноженной на перемещение точки приложения силы: Работа силы на участке траектории от точки 1 до точки 2 равна алгебраической сумме элементарных работ на отдельных бесконечно малых участках пути. Эта сумма приводится к интегралу т. е. равна скалярному произведению вектора силы на вектор скорости, с которой движется точка приложения этой силы; N — величина скалярная. Единица мощности — ватт (Вт): 1 Вт — мощность, при которой за время 1 с совершается работа 1 Дж (1 Вт = 1 Дж/с). Кинетическая энергия механической системы — это энергия механического движения этой системы. Сила F, действуя на покоящееся тело и вызывая его движение, совершает работу, а энергия движущегося тела возрастает на величину затраченной работы. Таким образом, работа dA силы F на пути, который тело прошло за время возрастания скорости от 0 до v, идет на увеличение кинетической энергии dT тела, т. е. 10. Консервативные силы. Потенциальная энергия. Потенциальная энергия — механическая энергия системы тел, определяемая их взаимным расположением и характером сил взаимодействия между ними. Пусть взаимодействие тел осуществляется посредством силовых полей (например, поля упругих сил, поля гравитационных сил), характеризующихся тем, что работа, совершаемая действующими силами при перемещении тела из одного положения в другое, не зависит от того, по какой траектории это перемещение произошло, а зависит только от начального и конечного положений. Такие поля называются потенциальными, а силы, действующие в них, — консервативными. Если же работа, совершаемая силой, зависит от траектории перемещения тела из одной точки в другую, то такая сила называется диссипативной; ее примером является сила трения. Тело, находясь в потенциальном поле сил, обладает потенциальной энергией П. Работа консервативных сил при элементарном (бесконечно малом) изменении конфигурации системы равна приращению потенциальной энергии, взятому со знаком минус, так как работа совершается за счет убыли потенциальной энергии:
Найдем потенциальную энергию упругодеформированного тела (пружины). Сила упругости пропорциональна деформации:
12. Абсолютно неупругий и упругий удары. Удар (или соударение)—это столкновение двух или более тел, при котором взаимодействие длится очень короткое время. Если для сталкивающихся тел e (коэффициент восстановления)=0, то такие тела называются абсолютно неупругими, если e=1 — абсолютно упругими. Абсолютно упругий удар — столкновение двух тел, в результате которого в обоих взаимодействующих телах не остается никаких деформаций и вся кинетическая энергия, которой обладали тела до удара, после удара снова превращается в кинетическую энергию (подчеркнем, что это идеализированный случай). Для абсолютно упругого удара выполняются закон сохранения импульса и закон сохранения кинетической энергии. Обозначим скорости шаров массами т1 и m2 до удара через v1 и v2, после удара—через Находим Абсолютно неупругий удар — столкновение двух тел, в результате которого тела объединяются, двигаясь дальше как единое целое. Продемонстрировать абсолютно неупругий удар можно с помощью шаров из пластилина (глины), движущихся навстречу друг другу (рис. 22). Если массы шаров т1 и т2, их скорости до удара v1 и v2, то, используя закон сохранения импульса, можно записать
Популярное:
|
Последнее изменение этой страницы: 2016-08-24; Просмотров: 591; Нарушение авторского права страницы