|
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Фотоэффект. З-ны внешнего фотоэффекта. Фотоны. Ур-ие Эйнштейна для вн. фотоэффекта.
Фотоэффект – явление испускания электронов с поверхности вещ-ва под действием ЭМИ света. Этот фотоэффект явл внешним. Законы фотоэффекта: 1-ый закона фотоэффекта: количество электронов, вырываемых светом с поверхности металла за единицу времени на данной частоте, прямо пропорционально световому потоку, освещающему металл. Согласно 2-му закону фотоэффекта, максимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от его интенсивности. 3-ий закон фотоэффекта: для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света 4-ый закон: фотоэффект практически без инерционен, т.к. фототок возникает мгновенно (примерно10^-9сек) eU= формула Эйнштейна для фотоэффекта:
где
, энергия фотона Корпускулярно-волновой дуализм. Энергия, масса и импульс фотона. Давление света. Эффект Комптона. Корпускуля́ рно-волново́ й дуали́ зм — принцип, согласно которому любой объект может проявлять как волновые, так и корпускулярные свойства. Был введён при разработке квантовой механики для интерпретации явлений, наблюдаемых в микромире, с точки зрения классических концепций. Как классический пример, свет можно трактовать как поток корпускул (фотонов), которые во многих физических эффектах проявляют свойства электромагнитных волн. Свет демонстрирует свойства волны в явлениях дифракции и интерференции. Например, даже одиночные фотоны, проходящие через двойную щель, создают на экране интерференционную картину, определяемую уравнениями Максвелла.
- комптоновская длина волны электрона. Линейчатый спектр атома водорода. Формула Бальмера
Модели атома. Модель Томсона. Опыты Резерфорда. Планетарная модель атома. А́ том — наименьшая химически неделимая часть химического элемента, являющаяся носителем его свойств[1]. Атом состоит из атомного ядра и электронов. Ядро атома состоит из положительно заряженных протонов и незаряженных нейтронов. Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. Модель атома Томсона (модель «Пудинг с изюмом»). Дж. Дж. Томсон предложил рассматривать атом как некоторое положительно заряженное тело с заключёнными внутри него электронами. Планетарная модель атома Бора-Резерфорда. В 1911 году[3] Эрнест Резерфорд, проделав ряд экспериментов, пришёл к выводу, что атом представляет собой подобие планетной системы, в которой электроны движутся по орбитам вокруг расположенного в центре атома тяжёлого положительно заряженного ядра («модель атома Резерфорда»). Масса электронов в несколько тысяч раз меньше массы атомов. Так как атом в целом нейтрален, то, следовательно, основная масса атома приходится на его положительно заряженную часть. Для экспериментального исследования распределения положительного заряда, а значит, и массы внутри атома Резерфорд предложил в 1906 г. применить зондирование атома с помощью α -частиц. Этими частицами Резерфорд бомбардировал атомы тяжелых элементов. Электроны вследствие своей малой массы не могут заметно изменить траекторию α -частицы. Рассеяние (изменение направления движения) α -частиц может вызвать только положительно заряженная часть атома. Таким образом, по рассеянию α -частиц можно определить характер распределения положительного заряда и массы внутри атома. Радиоактивный препарат, например радий, помещался внутри свинцового цилиндра, вдоль которого был высверлен узкий канал. Пучок α -частиц из канала падал на тонкую фольгу из исследуемого материала. После рассеяния α -частицы попадали на полупрозрачный экран, покрытый сульфидом цинка. Столкновение каждой частицы с экраном сопровождалось вспышкой света (сцинтилляцией), которую можно было наблюдать в микроскоп. 28. Постулаты Бора. Спектр излучения атома водорода по Бору. Люминесценция. Постулаты Бора — основные допущения, сформулированные Бором для объяснения закономерности линейчатого спектра атома водорода. 1)Атом может находиться только в особенных стационарных, или квантовых, состояниях, каждому из которых отвечает определенная энергия. В стационарном состоянии атом не излучает электромагнитных волн. 2)Электрон в атоме, не теряя энергии, двигается по определённым дискретным круговым орбитам, для которых момент импульса квантуется: 3)При переходе электрона с орбиты (энергетический уровень) на орбиту излучается или поглощается квант энергии Именно Бор получил для спектра водорода формулу: Люминесце́ нция - нетепловое свечение вещества, происходящее после поглощения им энергии возбуждения. Будем называть люминесценцией избыток над температурным излучением тела в том случае, если это избыточное излучение обладает конечной длительностью примерно 10− 10 секунд и больше». Таково каноническое определение люминесценции. Это значит, что яркость люминесцирующего объекта в спектральном диапазоне волн его излучения существенно больше, чем яркость абсолютно чёрного тела в этом же спектральном диапазоне, имеющего ту же температуру, что и люминесцирующее тело.Физическая природа люминесценции состоит в излучательных переходах электронов атомов или молекул из возбуждённого состояния в основное. В настоящее время оно применяется к излучению в инфракрасном, видимом, ультрафиолетовом и рентгеновском диапазонах (см. шкала электромагнитных волн). Популярное:
|
Последнее изменение этой страницы: 2016-08-24; Просмотров: 825; Нарушение авторского права страницы