Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Гипотеза де-Бройля. Волновые свойства вещества



Недостаточность теории Бора сделала необходимым критический пересмотр основ квантовой теории и представлений о природе элементарных частиц (электронов, протонов и т. п, ). Возник вопрос о том, насколько исчерпывающим является представление электрона в виде малой механической частицы, характеризуемой определенными координатами и определенной скоростью.

В результате углубления наших знаний о природе света выяснилось, что в оптических явлениях обнаруживается своеобразный дуализм (см. § 57). Наряду с такими свойствами света, которые самым непосредственным образом свидетельствуют о его волновой природе (интерференция, дифракция), имеются и другие свойства, столь же непосредственно обнаруживающие его корпускулярную природу (фотоэффект, явление Комп-тона).

В 1924 г. Луи де-Бройль выдвинул смелую гипотезу, что дуалн-зм не является особенностью одних только оптических явлений, но имеет универсальное значение. «В оптике, — писал он, — в течение столетия слишком пренебрегали корпускулярным способом рассмотрения по сравнению с волновым; не делалась ли в теории вещества обратная ошибка? »

Допуская, что частицы вещества наряду с корпускулярными свойствами имеют также и волновые, де-Бройль перенес на случай частиц вещества те же правила пе-

рехода от одной картины к другой, какие справедливы в случае света. Фотон, как известно [см. формулы (57.1) и (57.4)], обладает энергией

и импульсом

По идее де-Бройля, движение электрона или какой-либо другой частицы связано с волновым процессом, длина волны которого равна

а частота

Гипотеза де-Бройля вскоре была блестяще подтверждена экспериментально. Дэвиссон и Джермер обнаружили, что пучок электронов, рассеивающийся от кристаллической пластинки, дает дифракционную картину. Томсон и независимо от него Тартаковский получили дифракционную картину при прохождении электронного пучка через металлическую фольгу. Опыт осуществлялся следующим образом (рис. 190). Пучок электронов, ускоренных разностью потенциалов порядка нескольких десятков киловольт, проходил через тонкую металлическую фольгу и попадал на фотопластинку. Электрон при ударе о фотопластинку оказывает на нее такое же действие, как и фотон. Полученная таким способом электронограмма золота (рис. 191, а) сопоставлена с полученной в аналогичных условиях рентгенограммой алюминия (рис. 191, 6). Сходство обеих картин поразительно.

Штерн и его сотрудники показали, что дифракционные явления обнаруживаются также у атомных и молекулярных пучков. Во всех перечисленных случаях

дифракционная картина соответствует длине волны, определяемой соотношением (64.1).

Из описанных опытов с несомненностью вытекает, что пучок микрочастиц определенной скорости и

■ аправлеиия дает дифракционную картину, подобную картине, получаемой от плоской волны.

Дифракция электронов — процесс рассеяния электронов на совокупности частиц вещества, при котором электрон проявляет волновые свойства. Данное явление называется корпускулярно-волновым дуализмом, в том смысле, что частица вещества(в данном случае взаимодействующие электроны) может быть описана, как волна.

ДИФРАКЦИЯ НЕЙТРОНОВ - явление рассеяния нейтронов, в к-ром определяющую роль играют волновые свойства нейтрона (см. Корпускулярно-волновой дуализм ).Длина волны и импульс р связаны соотношением де Бройля =hp. Матем. описание Д. н., так же как и в случае др. волновых полей, следует из принципа Гюйгенса - Френеля и, в этом смысле, аналогично описаниюдифракции света, рентг. лучей, электронов и др. микрочастиц (см. Дифракция волн ).Согласно этому описанию, интенсивность рассеянного излучения в некрой точке пространства зависит как от , так и от свойств рассеивающего объекта. Соответственно, Д. н. применяется как для исследования или формирования нейтронных пучков (нейтронные монохроматоры, анализаторы), так и для исследований строения рассеивающего вещества.

 

Рис. 1. Угловое распределение нейтронов с энергией 14 МэВ, рассеянных на ядре Sn; - сечение рассеяния; - угол рассеяния.

Оценка энергии нулевых колебаний осциллятора. Будем действовать точно так же, как и в предыдущем примере. Энергия классического одномерного гармонического осциллятора описывается выражением

E = px2 / 2m + mω 2x2 / 2.

Рассматривая px и х как неопределенности импульса и координаты осциллирующего микрообъекта и пользуясь в качестве соотношения неопределенностей равенством pxх = h, получаем

Е(px) = px2 / 2m + mω 2h2 / 2px2.

Приравнивая к нулю производную, находим величину

р0 = mω h, при которой функция Е(px) принимает минимальное значение. Легко убедится, что это значение равно

Е = Е(p0) = hω.

Этот результат весьма интересен. Он показывает, что в квантовой механике энергия осциллятора не может обратиться в нуль; ее минимальное значение оказывается порядка hω. Это есть так называемая энергия нулевых колебаний.

Учитывая существование нулевых колебаний, можно прийти, в частности, к следующему интересному заключению: энергия колебательного движения атомов кристалла не обращается в не обращается в нуль даже при температуре абсолютного нуля.

Нулевые колебания иллюстрируют принципиальное общее обстоятельство: нельзя реализовать микрообъект на «дне потенциальной ямы», или, иначе говоря, «микрообъект не может упасть на дно потенциальной ямы». Этот вывод не зависит от вида потенциальной ямы, так как является прямым следствием соотношений неопределенности импульса; в этом случае неопределенность координаты должна стать сколь угодно большой, что противоречит самому факту пребывания микрообъекта в потенциальной яме.

Туннелирование электрона через потенциальный барьер является принципиально квантово-механическим эффектом, который не имеет аналога в классической механике. Туннельный эффект является экспериментальным подтверждением одного из фундаментальных исходных положений квантовой механики - корпускулярно-волнового дуализма свойств элементарных частиц.

Туннельным эффектом называется возможность элементарной частице, например электрону, пройти (протуннелировать) через потенциальный барьер, когда барьер выше полной энергии частицы. Возможность существования туннельного эффекта в микромире была понята физиками в период создания квантовой механики, в 20-30-х годах нашего века. В дальнейшем за счет туннельного эффекта были объяснены некоторые весьма важные явления, обнаруженные экспериментально в различных областях физики.

Вопрос 12

А́ том (от др.-греч. ἄ τ ο μ ο ς — неделимый) — частица вещества микроскопических размеров и массы, наименьшая частьхимического элемента, являющаяся носителем его свойств.[1][2]

Атом состоит из атомного ядра и электронов. Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. В противном случае он обладает некоторым положительным или отрицательным зарядом и называется ионом.[1] В некоторых случаях под атомами понимают только электронейтральные системы, в которых заряд ядра равен суммарному заряду электронов, тем самым противопоставляя их электрически заряженным ионам.[2][3]

Ядро, несущее почти всю (более чем 99, 9%) массу атома, состоит из положительно заряженныхпротонов и незаряженныхнейтронов, связанных между собой при помощи сильного взаимодействия. Атомы классифицируются по количеству протонов и нейтронов в ядре: число протонов Z соответствует порядковому номеру атома в в периодической системе и определяет его принадлежность к некоторому химическому элементу, а число нейтронов N — определённому изотопу этого элемента. Число Z также определяет суммарный положительный электрический заряд (Ze) атомного ядра и число электронов в нейтральном атоме, задающее его размер.[4]

ВОДОРОДОПОДОБНЫЕ АТОМЫ - атомы (ионы), состоящие, подобно атому водорода, из ядра и одного электрона. К ним относятся ионы элементов с ат. номером 2, потерявшие все электроны, кроме одного: He+, Li+2, В+3,... Вместе с водородом они образуют простейший изоэлектронный ряд.Уровни энергии (и спектры) В. а. подобны водородным, отличаясь от них масштабом энергий (и частот) переходов в Z2 раз (см. Атом).

Системы, подобные В. а., образуют атомное ядро и мезон (мезоатом ), а также электрон и позитрон (позитроний; )для этих систем также получаются аналогичные водородным уровни энергии и спектры.

Энергетический уровень — собственные значения энергииквантовых систем, то есть систем, состоящих из микрочастиц (электронов, протонов и других элементарных частиц) и подчиняющихся законам квантовой механики. Каждый уровень характеризуется определённым состоянием системы, или подмножеством таковых в случаевырождения. Понятие применимо к атомам (электронные уровни), молекулам (различные уровни, соответствующие колебаниям и вращениям), атомным ядрам(внутриядерные энергетические уровни) и т.д.

Ионизации и возбуждения.

На освобождение электрона от связи с атомным ядром, вследствие чего и происходит образование положительного иона, необходимо затратить определенное количество энергии. Энергия, израсходованная на отрыв электрона, называется работой ионизации. Работа ионизации, выраженная в электронвольтах, называетсяпотенциалом ионизации (электронвольт-единица энергии, которую приобретает электрон, ускоренный электрическим полем с разностью потенциалов в 1 В). Если сообщить связанному электрону газовой молекулы или атома некоторое количество дополнительной энергии, то электрон перейдет на новую орбиту с более высоким энергетическим уровнем, а молекула или атом будут находиться в возбужденном состоянии. Количество энергии, выраженное в электронвольтах, которое необходимо затратить для возбуждения атома или молекулы газа, называется потенциалом возбуждения. Возбужденное состояние атома или молекулы газа является неустойчивым, и электрон может снова возвратиться на стационарную орбиту, а атом или молекула перейдет в нормальное невозбужденное состояние. Энергия возбуждения при этом передается в окружающее пространство в форме светового электромагнитного излучения.

Величина потенциала ионизации и возбуждения зависит от природы атома. Наименьший потенциал ионизации

(3, 9 эВ) имеют пары цезия, а наибольший (24, 5 эВ) наблюдается у газа гелия. У щелочноземельных металлов (цезия, калия, натрия, бария, кальция) связь между электронами и ядром невелика, поэтому они имеют наименьшие потенциалы ионизации, следовательно, на возбуждение и работу выхода электрона потребуется затратить меньше энергии, чем у железа, марганца, меди и никеля. Элементы, имеющие меньшие потенциалы ионизации и возбуждения, чем свариваемый металл, вводят в состав электродных покрытий, чтобы повысить стабилизацию дугового разряда в газах. Количество энергии, которое необходимо для выделения электрона из металла или жидкого тела, называется работой выхода электрона и выражается в электронвольтах.

Пространственное распределение электрона в атоме водорода. @

Графически вероятность нахождения электрона можно изобразить в виде облака, где более темные области соответствуют большей вероятности нахождения. «Размеры» и «форму» электронного облака в заданном состоянии атома можно вычислить. Для основного состояния атома водорода решение уравнения Шредингера дает
, (2.6)
где φ (r) – волновая функция, зависящая только от расстояния r до центра атома, r1 – постоянная, совпадающая с радиусом первой Боровской орбиты. Следовательно, электронное облако в основном состоянии водорода сферически-симметрично, как показано на рисунке 11. Электронное облако только приблизительно характеризует размеры атома и движение электрона, так как согласно (2.15) вероятность обнаружения электрона не равна нулю для любой точки пространства. На рисунке 12 изображены электронные облака атома водорода в состояниях: n=2, l=1 и m=1, 0, -1 при наличии магнитного поля.



Рис. 11. Электронное облако атома водорода в основном состоянии n =1, l= 0.

Рис. 12. Электронные облака атома водорода и прецессия моментов импульса в состояниях n = 2, l = 1 для m = 1, 0, -1

Если в этих состояниях определить наиболее вероятные расстояния электрона от ядра, то они будут равны радиусам соответствующих Боровских орбит. Таким образом, хотя квантовая механика не использует представление о движении электрона по определенным траекториям, тем не менее, радиусам Боровских орбит и в этой теории можно придать определенный физический смысл.

 

ШИРИНА УРОВНЯ - неопределённость энергии кванто-вомеханич. системы (атома, молекулы и др.), обладающей дискретными уровнями энергии в состоянии, к-рое не является строго стационарным. Ш. у. D , характеризующая размытие уровня энергии, его уширение, зависит от ср. длительности пребывания системы в данном состоянии- времени жизни на уровне tkи, согласно неопределённостей соотношению для энергии и времени, Для строго стационарного состояния системы tk= и D =0. Время жизни tk, а следовательно, и Ш.у. обусловлены возможностью квантовых переходов системы в состояния с др. энергиями. Для свободной системы (напр., для изолир. атома) спонтанные излучат. переходы с уровня на нижележащие уровни определяют радиационную, или естественную, Ш.у.:

, где -полная вероятность спон танного испускания с уровня , Aki- Эйнштейна коэффициентыдля спонтанного испускания. Уширение уровня может быть вызвано также спонтанными безызлучат. переходами, напр. для радиоакт. атомного ядра - альфа-распадом.Ширина атомного уровня очень мала по сравнению с энергией уровня. В др. случаях (напр., для возбуждённых ядер, вероятность квантовых переходов к-рых обусловлена испусканием нейтронов и очень велика) Ш.у. может стать сравнимой с расстоянием между уровнями. Любые взаимодействия, увеличивающие вероятность перехода системы в др. состояния, приводят к дополнит. уширению уровней. Примером может служить уширение уровней атома (иона) в плазме в результате его столкновения с ионами и электронами (см. Излучение плазмы). В общем случае полная Ш.у. пропорц. сумме вероятностей всех возможных переходов с этого уровня - спонтанных и вызванных разл. взаимодействиями.

Особенности структуры электронных уровней в сложных атомах. Связь распределения электронов по орбиталям с периодической таблицей Менделеева.@


Условно все возможные квантовые состояния распределяют (группируют) по слоям (оболочкам), подслоям (подоболочкам) и орбиталям. Как оказалось, свойства атомов определяются распределением электронов по этим состояниям.

Квантовым слоем (квантовой оболочкой) называют совокупность состояний, которым соответствует одно и тем же значение квантового числа n, но разные значения l, m, s. Наибольшее число электронов N, которые могут находиться в оболочке, согласно (2.8), равно удвоенному квадрату номера слоя: N=2n 2. Так как энергия состояний в многоэлектронном атоме зависит от двух квантовых чисел n и l, то электроны в квантовом слое могут занимать l энергетических уровней. Квантовые слои обозначаются цифрами, соответствующими номерам слоев, кроме того они имеют названия: слой n = 1 называют К слоем (или К оболочкой), слой n = 2 называют L слоем (или L оболочкой), слой n= 3 – М слоем, n = 4 – N, n = 5 – О слоем, n = 6 – Р и так далее.

Каждый квантовый слой с номером n условно состоит из n квантовых подслоев (подоболочек), соответствующих состояниям с одними и теми же n, l, но разными m, s.В подслое может находиться до 2(2l+1) электронов, подслои обозначаются буквами: l = 0 – s, l= 1 – p, l= 2 – d, l= 3 – f, l= 4 – g и т.д. Энергия электронов одного подслоя примерно одинакова.

В свою очередь, каждый подслой состоит из 2l+1орбиталей, соответствующих состояниям с одними и теми же n, l, m, но разными s. 1/2.±На каждой орбитали может находиться не более двух электронов с разными спиновыми числами s =

Отсюда следует, что в s-подслое может содержаться максимум 2 электрона, в р-подслое – 6, в d – 10, в f – 14, в g – 18 электронов. Соответственно в слое K может содержаться максимум 2 электрона, в слое L – 8, в слое M –18, в слое N – 32 и т.д.

1s®Структуры и максимально возможные заполнения слоев изображают в виде формул: K-слой 2 2s®, L слой 22p6 3s®, M-слой 2 3p6 3d10 4s®, N-слой 2 4p64d104f14. Используя введенные понятия, можно условно формулой и графически изобразить распределение электронов, например атома кислорода О8, следующим образом: символьно- 1s2 2s2 2p4, графически- (Рис.14).

Рис.14. Условное графическое изображение орбиталей кислорода.
При заселении орбиталей электроны в первую очередь располагаются поодиночке на каждой орбитали, а затем начинается их заполнение вторыми электронами. Эта особенность называется правилом Гунда, она связана с тем, что энергия подслоя при таком заполнении несколько меньше. На рис.14 показано применение этого правила для кислорода.

 

Принцип Паули - фундаментальный закон природы, согласно которому в квантовой системе две (или более) тождественныечастицы с полуцелым спином не могут одновременно находиться в одном и томже состоянии. Сформулирован В. Паули (1925).
Состояние каждого электрона в атоме характеризуется четырьмя квантовыми числами:

1. Главное квантовое число n (n = 1, 2...).

2. Орбитальное (азимутальное) квантовое число l (l = 0, 1, 2, ... n-1).

3. Магнитное квантовое число m (m = 0, +/-1, +/-2, +/-... +/-l).

4. Спиновое квантовое число ms (ms = +/-1/2 ).

Для одного фиксированного значения главного квантового числа n существует 2n2 различных квантовых состояний электрона.

Один из законов квантовой механики, называемый принципом Паули, утверждает:

В одном и том же атоме не может быть двух электронов, обладающих одинаковым набором квантовых чисел, (т.е. не может быть двух электронов в одинаковом состоянии).

Принцип Паули дает объяснение периодической повторяемости свойств атома, т.е. периодической системе элементов Менделеева.

Первый постулат Бора (постулат стационарных состояний) гласит: атомная система может находится только в особых стационарных или квантовыхсостояниях, каждому из которых соответствует определенная энергия En. В стационарных состояниях атом не излучает.

Этот постулат находится в явном противоречии с классической механикой, согласно которой энергия движущегося электрона может быть любой. Он находится в противоречии и с электродинамикой, так как допускает возможность ускоренного движения электронов без излучения электромагнитных волн. Согласно первому постулату Бора, атом характеризуется системой энергетических уровней, каждый из которых соответствует определенному стационарному состоянию (рис. 6.2.2). Механическая энергия электрона, движущегося по замкнутой траектории вокруг положительно заряженного ядра, отрицательна. Поэтому всем стационарным состояниям соответствуют значения энергии En < 0. При En ≥ 0 электрон удаляется от ядра, т. е. происходит ионизация. Величина |E1| называется энергией ионизации. Состояние с энергией E1 называется основным состоянием атома.

Рисунок 6.2.2. Энергетические уровни атома и условное изображение процессов поглощения и испускания фотонов

Второй постулат Бора (правило частот) формулируется следующим образом: при переходе атома из одного стационарного состояния с энергией En в другое стационарное состояние с энергией Em излучается или поглощается квант, энергия которого равна разности энергий стационарных состояний:

nm = En – Em,

где h – постоянная Планка. Отсюда можно выразить частоту излучения:

Второй постулат Бора также противоречит электродинамике Максвелла, так как частота излучения определяется только изменением энергии атома и никак не зависит от характера движения электрона.

Теория Бора при описании поведения атомных систем не отвергла полностью законы классической физики. В ней сохранились представления об орбитальном движении электронов в кулоновском поле ядра. Классическая ядерная модель атома Резерфорда в теории Бора была дополнена идеей о квантовании электронных орбит. Поэтому теорию Бора иногда называют полуклассической.

 

ЛИНЕЙЧАТЫЕ СПЕКТРЫ — оптические спектры испускания и поглощения, состоящие из отдельных спектральных линий. Л. с. являются атомные спектры, спектры звёздных атмосфер (см. Фраунгофероеы линии), спектры органич. молекул при низких темп pax в спец. условиях (см.…

АТОМНЫЕ СПЕКТРЫ - оптические спектры свободных или слабо связанных атомов (одноатомных газов, паров). Обусловлены квантовыми переходами атома. Атомные спектры - линейчатые, состоят из отдельных спектральных линий, которые характеризуются определенной длиной волны и для простых атомов группируются в спектральные серии. Содержат информацию о строении атомов, используются также в спектральном анализе.

Вопрос 13.

 

ЯДРО АТОМНОЕ - центральная массивная часть атома, состоящая из протонов и нейтронов (нуклонов). В Я. а. сосредоточена почти вся масса атома (более 99, 95%). Размеры ядер порядка 10-13 -10-12 см. Ядра имеют положит. электрич.заряд, кратный абс. величине заряда электрона е: Q = Ze. Целое число Z совпадает с порядковым номером элемента впериодической системе элементов. Я. а. было открыто Э. Резерфордом (Е. Rutherford) в 1911 в опытах по рассеянию a-частиц при прохождении их через вещество.

 

СТРОЕНИЕ

Ядро представляет собой центральную часть атома. В нем сосредоточены положительный электрический заряд и основная часть массы атома; по сравнению с радиусом электронных орбит размеры ядра чрезвычайно малы: 10-15 - 10-14 м. Ядра всех атомов состоят из протонов и нейтронов, имеющих почти одинаковую массу, но лишь протон несет электрический заряд. Полное число протонов называется атомным номером Z атома, который совпадает с числом электронов в нейтральном атоме. Ядерные частицы (протоны и нейтроны), называемые нуклонами, удерживаются вместе очень большими силами; по своей природе эти силы не могут быть ни электрическими, ни гравитационными, а по величине они на много порядков превышают силы, связывающие электроны с ядром. Первое представление об истинных размерах ядра давали опыты Резерфорда по рассеянию альфа-частиц в тонких металлических фольгах. Частицы глубоко проникали сквозь электронные оболочки и отклонялись, приближаясь к заряженному ядру. Эти опыты явно свидетельствовали о малых размерах центрального ядра и указали на способ определения ядерного заряда. Резерфорд установил, что альфа-частицы приближаются к центру положительного заряда на расстояние примерно 10-14 м, а это позволило ему сделать вывод, что таков максимально возможный радиус ядра. На основе таких предположений Бор построил свою квантовую теорию атома, успешно объяснившую дискретные спектральные линии, фотоэффект, рентгеновское излучение и периодическую систему элементов. Однако в теории Бора ядро рассматривалось как положительный точечный заряд. Ядра большинства атомов оказались не только очень малы - на них никак не действовали такие средства возбуждения оптических явлений, как дуговой искровой разряд, пламя и т.п. Указанием на наличие некой внутренней структуры ядра явилось открытие в 1896 А. Беккерелем радиоактивности. Оказалось, что уран, а затем и радий, полоний, радон и т.п. испускают не только коротковолновое электромагнитное излучение, рентгеновское излучение и электроны (бета-лучи), но и более тяжелые частицы (альфа-лучи), а они могли исходить лишь из массивной части атома. Резерфорд использовал альфа-частицы радия в своих опытах по рассеянию, которые послужили основой формирования представлений о ядерном атоме. (В то время было известно, что альфа-частицы - это атомы гелия, лишенные своих электронов; но на вопрос - почему некоторые тяжелые атомы спонтанно испускают их, ответа еще не было, как не было и точного представления о размерах ядра.)

 

Модели ядра

Нач. период развития ядерной физики связан с формированием и развитием капельной и оболочечной моделей ядра. Эти Я. м. возникли почти одновременно в 30-х гг. 20 в. Они основаны на разл. представлениях и призваны описывать противоположные свойства ядер. В капельной модели ядро рассматривается как непрерывная среда, состоящая из нейтронной и протонной жидкостей и описываемая ур-ниями классич. гидродинамики (отсюда др. назв.- г и д р о д и н а м и ч. м о д е л ь). Плотн. ядерной жидкости почти постоянна внутри объёма капли и резко падает в поверхностном слое, толщина к-рого значительно меньше радиуса капли. Осн. параметры: равновесная плотность безграничной ядерной жидкости r0 (0, 16 частиц/Фм 3), энергия связи на 1 нуклон m0 (16 МэВ) и коэф. поверхностного натяжения s (1 МэВ/Фм 2); иногда вводят s1 и s2 для нейтронов и протонов в отдельности. Для учёта зависимости энергии связи ядра от величины нейтронного избытка (N-Z; N и Z- соответственно числа нейтронов и протонов в ядре) вводится изовекторный коэф. сжимаемости ядерной материи b (30 МэВ); для учёта конечной сжимаемости ядерного вещества – изоскалн коэф. сжимаемости (м о д у л ь с ж а т и я) K(200 МэВ).

Капельная модель ядра описывает осн. макроскопич. свойства ядер: свойство насыщения, т. е. пропорциональность энергии связи тяжёлых ядер массовому числу A = N+Z; зависимость радиуса ядра R от A: R = r0A1/3, где r0 - практически постоянный коэф. (1, 06 Фм) за исключением самых лёгких ядер. Она приводит к Вайцзек-кера формуле, к-рая в среднем хорошо описывает энергии связи ядер. Капельная модель хорошо описывает деление ядер. В сочетании с т. н. оболочечной поправкой (см. ниже) она до сих пор служит осн. инструментом исследования этого процесса.

Оболочечная модель ядра основана на представлении о ядре как о системе нуклонов, независимо движущихся в ср. поле ядра, создаваемом силовым воздействием остальных нуклонов. Эта Я. м. возникла по аналогии с атомной моделью оболочек и первоначально была призвана объяснить обнаруженные экспериментально отклонения от ф-лы Вайцзеккера и существованиемагических ядер, для к-рых N и Z соответствуют наиб. выраженным максимумам энергии связи. В отличие от капельной модели, к-рая практически сразу возникла в законченном виде, оболочечная модель претерпела длит. период поиска оп-тим. формы потенциала ср. поля U(r), обеспечивающего правильные значения магич. чисел. Решающий шаг был сделан в кон. 40-х гг. М. Гёпперт-Майер (М. Goeppert-Mayer) и X. Йенсеном (Н. Jensen), выяснившими важную роль спин-орбитального слагаемого (USL )ср. поля. Для центр. части ядра в совр. теории обычно используют потенциал Саксона-Вудса.

ЯДЕРНЫЕ РЕАКЦИИ

ЯДЕРНЫЕ РЕАКЦИИ, превращения атомных ядер при взаимодействии с элементарными частицами, g-квантами или друг с другом. Ядерные реакции используются в экспериментальной ядерной физике (исследование свойств элементарных частиц, получение трансурановых элементов и др.), извлечении и применении ядерной энергии и др. Ядерные реакции - основной процесс производства энергии светящихся звезд.

ПОРОГРЕАКЦИИ

Механизмы ядерных реакций.

По механизму взаимодействия ядерные реакции делятся на два основных вида:

• реакции с образованием составного ядра, это двустадийный процесс, протекающий при не очень

большой кинетической энергии сталкивающихся частиц (примерно до 10 МэВ).

• прямые ядерные реакции, проходящие за ядерное время, необходимое для того, чтобы частица

пересекла ядро. Главным образом такой механизм проявляется при очень больших энергиях бомбардирующих частиц

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-08-24; Просмотров: 2293; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.063 с.)
Главная | Случайная страница | Обратная связь