Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Волновые оптические гироскопы.



Под термином ² волновые оптические гироскопы² обычно понимают два типа гироскопов – лазерный гироскоп (ЛГ) и волоконно-оптический гироскоп (ВОГ). Носителем информации об угловой скорости вращения основания в этих гироскопах являются электромагнитные волны. В конструкциях ЛГ и ВОГ эти волны оптического частотного диапазона распространяются по замкнутому оптическому контуру в двух противоположных направлениях и при вращении контура в процессе его полного обхода проходят разный путь. Разность оптических путей волн в соответствии с эффектом Саньяка пропорциональна угловой скорости вращения контура. В ЛГ эта разность трансформируется в разность частот, а в ВОГ – в разность фаз волн; соответствующие измерительные преобразователи этих параметров волн формируют выходные сигналы гироскопов.

Достоинствами волновых оптических гироскопов являются широкий динамический диапазон измерений, линейность и стабильность выходной характеристики, малая чувствительность к перегрузкам и, в частности, к ориентации входной измерительной оси относительно направления силы тяжести, высокая надежность и малое время готовности, малая потребляемая мощность. Все эти качества предопределяют высокую эффективность использования ЛГ и ВОГ в БИНС. В настоящее время ЛГ широко применяются в БИНС разнообразных подвижных объектов. В последние годы наметился существенный прогресс и в построении БИНС на ВОГ в связи с повышением качества оптического волокна и интегральной оптики, а также в связи с совершенствованием компенсационных схем ВОГ.

Теоретические основы построения волновых оптических гироскопов, особенности конструкций подсистем, их метрологические характеристики представлены, например, в [5.14…5.24]. Рассмотрим здесь кратко принципы построения ЛГ и ВОГ, а также укажем основные источники их погрешностей.

Эффект Саньяка.

Рассмотрим распространение двух встречных электромагнитных волн λ 1, λ 2 по замкнутому оптическому контуру (рис.5.6). Волны генерируются источником на контуре, расположенном в точке А. Контур вращается вокруг оси, перпендикулярной его плоскости и проходящей через центр О, с угловой скоростью Ω. После обхода контура в противоположных направлениях волны интерферируют, причем при вращении контура интерференционная картина сдвигается, и величина сдвига пропорциональна скорости вращения.

Этот факт свидетельствует о том, что оптический путь, пройденный волнами по замкнутому контуру - разный; соответственно и времена полного обхода вращающегося контура разные. Определим эти параметры на основе упрощенного кинематического подхода.

Выберем на контуре малый участок BC=dl. Пока волна λ 1 идет из точки B в точку С эта точка переместится в точку D, причем CD=dx. Перемещение dx, в свою очередь, определяется соотношением:

dx= vτ, (5.31)

где v- окружная линейная скорость участка BC; τ - время движения электромагнитной волны λ по участку BD

v=rΩ, τ =dl/c, (5.32)

где r - расстояние участка BC до центра вращения; c - скорость света. Отсюда

Соотношение(5.33) определяет приращение элементарного оптического пути dl. Приращение же Δ L оптического пути при обходе волной λ 1 контура (изменение длины периметра) равно сумме приращений на отдельных участках и составляет:

(5.34)

 

где L - оптический путь волны в невращающемся контуре (оптический периметр контура).

Полагая в первом приближении, что произведение rdl равно удвоенной площади ∆ Ѕ треугольника OBC (5.6), а равен соответственно удвоенной площади S, охватываемой оптическим контуром, из (5.34) получим:

Полный оптический путь, проходимый волной λ 1 по замкнутому контуру, составляет L+∆ L. Очевидно для волны λ 2, распространяющейся навстречу вращению, он составляет L- ∆ L. Дифференциальная разность хода волн равна 2∆ L

Относительное запаздывание встречных волн составляет величину τ

Соотношение (5.37) могло бы явиться основой для построения датчика абсолютной угловой скорости Ω на основе измерения времени запаздывания τ. Однако, применительно к реальным диапазонам изменения измеряемых угловых скоростей разнообразных подвижных объектов при приемлемых величинах S величина τ очень мала, что не позволяет использовать на борту этот временной метод измерения Ω. Вместе с тем наличие τ предопределяет появление при вращении разности фаз ∆ φ C встречных волн, определяемой соотношением

Δ φ c=2π ν τ (5.38)

где ν циклическая частота волны; нижний индекс «c» означает, что ∆ φ C - разность фаз, доставляемая эффектом Саньяка

ν =c/λ , (5.39)

где λ - длина волны. На основе (5.36), (5.38), (5.39) получим

Если оптический контур, по которому распространяются волны λ 1, λ 2 - многовитковый с числом витков N, то соотношение (5.40) принимает вид:

Зависимость саньяковской разности фаз ∆ φ C от абсолютной угловой скорости Ω, определяемая (5.41), является основой для построения волоконно-оптического гироскопа. Если замкнутый оптический контур представляет собой резонатор, в котором обеспечивается генерация встречных волн (оптический квантовый генератор), то длины и соответственно частоты ν 1 и ν 2 этих волн зависят от периметра резонатора, а следовательно от Ω. При этом, как будет показано в 5.3.2, разность частот ν = ν 2 - ν 1 определяется соотношением:

Зависимость разности частот встречных волн от абсолютной угловой скорости вращения резонатора лежит в основе построения кольцевого лазерного гироскопа.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-08-31; Просмотров: 926; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.014 с.)
Главная | Случайная страница | Обратная связь