Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Волновые оптические гироскопы.
Под термином ² волновые оптические гироскопы² обычно понимают два типа гироскопов – лазерный гироскоп (ЛГ) и волоконно-оптический гироскоп (ВОГ). Носителем информации об угловой скорости вращения основания в этих гироскопах являются электромагнитные волны. В конструкциях ЛГ и ВОГ эти волны оптического частотного диапазона распространяются по замкнутому оптическому контуру в двух противоположных направлениях и при вращении контура в процессе его полного обхода проходят разный путь. Разность оптических путей волн в соответствии с эффектом Саньяка пропорциональна угловой скорости вращения контура. В ЛГ эта разность трансформируется в разность частот, а в ВОГ – в разность фаз волн; соответствующие измерительные преобразователи этих параметров волн формируют выходные сигналы гироскопов. Достоинствами волновых оптических гироскопов являются широкий динамический диапазон измерений, линейность и стабильность выходной характеристики, малая чувствительность к перегрузкам и, в частности, к ориентации входной измерительной оси относительно направления силы тяжести, высокая надежность и малое время готовности, малая потребляемая мощность. Все эти качества предопределяют высокую эффективность использования ЛГ и ВОГ в БИНС. В настоящее время ЛГ широко применяются в БИНС разнообразных подвижных объектов. В последние годы наметился существенный прогресс и в построении БИНС на ВОГ в связи с повышением качества оптического волокна и интегральной оптики, а также в связи с совершенствованием компенсационных схем ВОГ. Теоретические основы построения волновых оптических гироскопов, особенности конструкций подсистем, их метрологические характеристики представлены, например, в [5.14…5.24]. Рассмотрим здесь кратко принципы построения ЛГ и ВОГ, а также укажем основные источники их погрешностей. Эффект Саньяка. Рассмотрим распространение двух встречных электромагнитных волн λ 1, λ 2 по замкнутому оптическому контуру (рис.5.6). Волны генерируются источником на контуре, расположенном в точке А. Контур вращается вокруг оси, перпендикулярной его плоскости и проходящей через центр О, с угловой скоростью Ω. После обхода контура в противоположных направлениях волны интерферируют, причем при вращении контура интерференционная картина сдвигается, и величина сдвига пропорциональна скорости вращения. Этот факт свидетельствует о том, что оптический путь, пройденный волнами по замкнутому контуру - разный; соответственно и времена полного обхода вращающегося контура разные. Определим эти параметры на основе упрощенного кинематического подхода. Выберем на контуре малый участок BC=dl. Пока волна λ 1 идет из точки B в точку С эта точка переместится в точку D, причем CD=dx. Перемещение dx, в свою очередь, определяется соотношением: dx= vτ, (5.31) где v- окружная линейная скорость участка BC; τ - время движения электромагнитной волны λ по участку BD v=rΩ, τ =dl/c, (5.32) где r - расстояние участка BC до центра вращения; c - скорость света. Отсюда Соотношение(5.33) определяет приращение элементарного оптического пути dl. Приращение же Δ L оптического пути при обходе волной λ 1 контура (изменение длины периметра) равно сумме приращений на отдельных участках и составляет: (5.34)
где L - оптический путь волны в невращающемся контуре (оптический периметр контура). Полагая в первом приближении, что произведение rdl равно удвоенной площади ∆ Ѕ треугольника OBC (5.6), а равен соответственно удвоенной площади S, охватываемой оптическим контуром, из (5.34) получим: Полный оптический путь, проходимый волной λ 1 по замкнутому контуру, составляет L+∆ L. Очевидно для волны λ 2, распространяющейся навстречу вращению, он составляет L- ∆ L. Дифференциальная разность хода волн равна 2∆ L Относительное запаздывание встречных волн составляет величину τ Соотношение (5.37) могло бы явиться основой для построения датчика абсолютной угловой скорости Ω на основе измерения времени запаздывания τ. Однако, применительно к реальным диапазонам изменения измеряемых угловых скоростей разнообразных подвижных объектов при приемлемых величинах S величина τ очень мала, что не позволяет использовать на борту этот временной метод измерения Ω. Вместе с тем наличие τ предопределяет появление при вращении разности фаз ∆ φ C встречных волн, определяемой соотношением Δ φ c=2π ν τ (5.38) где ν циклическая частота волны; нижний индекс «c» означает, что ∆ φ C - разность фаз, доставляемая эффектом Саньяка ν =c/λ , (5.39) где λ - длина волны. На основе (5.36), (5.38), (5.39) получим Если оптический контур, по которому распространяются волны λ 1, λ 2 - многовитковый с числом витков N, то соотношение (5.40) принимает вид: Зависимость саньяковской разности фаз ∆ φ C от абсолютной угловой скорости Ω, определяемая (5.41), является основой для построения волоконно-оптического гироскопа. Если замкнутый оптический контур представляет собой резонатор, в котором обеспечивается генерация встречных волн (оптический квантовый генератор), то длины и соответственно частоты ν 1 и ν 2 этих волн зависят от периметра резонатора, а следовательно от Ω. При этом, как будет показано в 5.3.2, разность частот ∆ ν = ν 2 - ν 1 определяется соотношением: Зависимость разности частот встречных волн от абсолютной угловой скорости вращения резонатора лежит в основе построения кольцевого лазерного гироскопа. Популярное:
|
Последнее изменение этой страницы: 2016-08-31; Просмотров: 926; Нарушение авторского права страницы