Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Средняя хронологическая моментного ряда. Средняя геометрическая величина



Средний уровень моментного ряда с равными интервалами рассчитывается по формуле средней хронологической: где n - число дат.

Среднегеометрическая величина дает возможность сохранять в неизменном виде не сумму, а произведение индивидуальных значений данной величины. Ее можно определить по следующей формуле:

Среднегеометрические величины наиболее часто используются при анализе темпов роста экономических показателей.

Для расчетов средней геометрической простой используется формула:

 

16) Средняя гармоническая величина

Средняя гармоническая — используется в тех случаях когда известны индивидуальные значения признака x и произведение x*f, а частоты f неизвестны.

В примере ниже x — урожайность известна, f — площадь неизвестна (хотя её можно вычислить делением валового сбора зерновых на урожайность), x*f — валовый сбор зерна известен.

Среднегармоническую величину можно определить по следующей фор муле:

 

Понятие и виды рядов распределения

Результаты сводки и группировки материалов статистического наблюдения оформляются в виде статистических рядов распределения. Статистические ряды распределения представляют собой упорядоченное распределение единиц изучаемой совокупности на группы по группировочному (варьирующему) признаку. Они характеризуют состав изучаемого явления, позволяют судить об однородности совокупности, границах ее изменения, закономерностях развития наблюдаемого объекта. В зависимости от признака статистические ряды распределения делятся на следующие:

- атрибутивные (качественные);

- вариационные (количественные):

a) дискретные;

b) интервальные

Атрибутивные ряды образуются по качественным признакам, которыми могут выступать занимаемая должность работников торговли, профессия, пол, образование и т.д. В правовой статистике - это виды преступлений (убийства, грабежи, разбои); занимаемая должность лиц, совершивших административные правонарушения; образование и т.д.

Вариационные ряды строятся на основе количественного группировочного признака. При этом вариационные ряды по способу построения бывают дискретными (прерывными) и интервальными (непрерывными).

Дискретный ряд распределения - ряд, который основан на прерывной вариации признака, т.е. в котором значение признака выражено целым числом (число раскрытых преступлений и т.д.). Для построения дискретного ряда с небольшим числом вариантов выписываются все встречающиеся варианты значений признака, а затем подсчитывается частота повторения варианта. Ряд распределения принято оформлять в виде таблицы, состоящей из двух колонок (или строк), в одной из которых представлены варианты, а в другой - частоты.

Интервальный ряд распределения - ряд, базирующийся на непрерывно изменяющемся значении признака, имеющего любые количественные выражения, т.е. значение признаков таких рядах задается в виде интервала.

При наличии достаточно большого количества вариантов значений признака первичный ряд является труднообозримым, и непосредственное рассмотрение его не дает представления о распределении единиц по значению признака в совокупности. Поэтому первым шагом в упорядочении первичного ряда является его ранжирование - расположение всех вариантов в возрастающем (убывающем) порядке

Вариационные ряды состоят из двух элементов: вариант и частот.

Варианта - это отдельное значение варьируемого признака, которое он принимает в ряду распределения.

Частота - это численность отдельных вариант или каждой группы вариационного ряда. Частоты, выраженные в долях единицы или в процентах к итогу, называются частостями. Сумма частот составляет объем ряда распределения.

Для построения ряда распределения непрерывно изменяющихся признаков, либо дискретных, представленных в виде интервалов, необходимо установить оптимальное число интервалов, на которые следует разбить все единицы изучаемой совокупности.

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-08-24; Просмотров: 664; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.011 с.)
Главная | Случайная страница | Обратная связь