Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Индивидуальные и общие индексы



В зависимости от степени охвата единиц изучаемой совокупности индексы делятся на индивидуальные и общие (сводные).

Индивидуальный индекс - это относительный показатель, отражающий изменение отдельного элементасложнойсовокупности.

Например, индивидуальный индекс характеризует изменение цены одного определенного тура среди всех реализуемых туров.

Динамику признаков по отдельным элементам совокупности за два сравниваемых периода можно оценить с помощью индивидуальных индексов. Приведем формулы некоторых индивидуальных индексов:

- индивидуальный индекс физического объема (количества) продукции (услуг);

- индивидуальный индекс цены;

- индивидуальный индекс стоимости продукции (товарооборота);

- индивидуальный индекс себестоимости единицы продукции (услуг);

- индивидуальный индекс производительности труда;

- индивидуальный индекс трудоемкости.

Таким образом, индивидуальные индексы представляют собой относительные показатели динамики или темпы роста. Могут рассчитываться в цепной или базисной формах по данным за несколько периодов.

Все индивидуальные индексы показывают, каково соотношение между отчетным и базисным показателями или во сколько раз изменилась (увеличилась или уменьшилась) индексируемая величина. Результат расчета индексных отношений выражается в процентах или коэффициентах. Например, индивидуальный индекс стоимости продукции показывает, во сколько раз изменилась стоимость продукции (услуг) в текущем периоде по сравнению с базисным периодом. Аналогично следует трактовать и другие индексы.

Индивидуальный индекс получается при сравнении двух величин. Поэтому при расчете индивидуальных индексов следует соблюдать следующие требования сопоставимости этих величин:

· одинаковая методология расчетов;

· однокачественность сравниваемых величин;

· одна и та же территория.

Для расчета индексов по всей совокупности единиц используются общие (сводные) индексы.

Общий (сводный) индекс - это относительный показатель, характеризующий изменение сложного социально-экономического явления, состоящего из непосредственно несоизмеримых элементов (различные виды продукции, товарные группы и т.д.).

Элементы сложного социально-экономического явления несопоставимы (в физических единицах), и поэтому непосредственно суммироваться не могут. Следовательно, чтобы рассчитать общие индексы, необходимо несоизмеримые составные элементы совокупности выразить их общей мерой - стоимостью. С этой целью используется агрегатная форма сводных индексов.

Общие индексы рассчитываются в виде агрегатных и средних индексов.

Агрегатные индексы

Агрегатные индексыявляются исходной формой общего индекса.

Агрегатный индекс – это: 1) это сложный относительный показатель, характеризующий среднее изменение социально-экономического явления, состоящего из несоизмеримых элементов; 2) общий индекс, полученный путем сопоставления итоговых количественных показателей, выражающих сложное явление в отчетном и базисном периодах с помощью соизмерителей.

Агрегатная форма индекса содержит два элемента:

1) индексируемую величину;

2) вес (соизмеритель), который позволяет соизмерить разнородные элементы совокупности.

В числителе и знаменателе агрегатного индекса изменяется лишь значение индексируемой величины, а соизмеритель остается постоянным, и фиксируется на уровне текущего или базисного периода. Это необходимо для того, чтобы не искажать оценку изменения индексируемой величины.

В результате, числитель и знаменатель агрегатного индекса представляет собой сумму произведений двух величин, одна из которых меняется (индексируемая величина), а другая - остается неизменной в числителе и знаменателе (вес индекса).

В качестве соизмерителей индексируемых величин могут использоваться:

· цена единицы продукции (услуг);

· количество продукции;

· себестоимость единицы продукции;

Таким образом, для построения агрегатного индекса необходимо определить:

- индексируемую величину, изменение которой показывает индекс;

- состав разнородных элементов сложного явления, по которым необходимо определить индекс;

- вес (соизмеритель) индексируемой величины, который позволяет: 1) выразить в одинаковых единицах измерения неоднородную продукцию, не подлежащую непосредственному суммированию; 2) определить объем изучаемой продукции в отчетном и базисном периодах.

Выбор соизмерителя зависит от исходной инфор­мации и от цели исследования. При этом универсальное значение имеют стоимостные соизмерители.

При выборе веса индекса используют следующее правило: при построении индекса количественного (объемного) по­казателя используются веса ба­зисного периода; при построении индекса качественного по­казателя используются веса отчетного периода.

Необходимость построения индексов количественных показа­телей возникает в случае, если итоги по отдельным элемен­там сложного явления непосредственно несоизмеримы. Например, если имеются данные о выпуске предприятием разнородной про­дукции (услуг) в натуральном выражении, то динамику выпуска в целом нельзя охарактеризовать отношением . Для сравнения объемов выпуска разных видов продукции (услуг) в отчетном и базисном периодах необходимо привести данные к единой, общей мере (например, к стоимостной оценке продукции). Тогда вместо получим где р - цена единицы продукции (услуги). Умножая цену р на количество продук­ции , и суммируя произведения, получим общий объем выпущен­ной продукции.

К агрегатным индексам качественных показателей относятся: - агрегатный индекс цен; - агрегатный индекс себестоимости; - агрегатный индекс трудоемкости; - агрегатный индекс производительности труда (выработки).

Рассмотрим построение агрегатного индекса на примере индексов физического объема , цены и стоимости продукции .

Агрегатный индекс физического объема продукции:

,

где - объем продукции соответственно в отчетном и базисном периоде; - цена единицы товара в базисном периоде; условная стоимость продукции отчетного периода в базисных ценах; фактическая стоимость продукции базисного периода в базисных ценах.

Индекс показывает относительное изменение стоимости продукции за счет изменения объема (количества) проданной продукции. В этом индексе индексируемой величиной является количество продукции в натуральном выражении, а весом (соизмерителем) – цена базисного периода. В качестве весов берутся цены базисного периода , так как индекс физического объема является индексом количественного показателя.

Так как числитель и знаменатель агрегатных индексов имеют экономический смысл, в статистическом анализе используются из разности. Например, разность числителя и знаменателя индекса физического объема продукции показывает абсолютное изменение общей стоимости продукции за счет изменения ее объема .

Замечание. При построении агрегатного индекса физического объема могут использоваться и другие соизмерители, например, себестоимость единицы продукции базисного периода :

.

Разность числителя и знаменателя индекса показывает абсолютное изменение общих затрат (издержек) на производство в связи с изменением количества продукции.

 

Агрегатный индекс стоимости продукции (товарооборота) :

,

где стоимость продукции отчетного периода;

стоимость продукции базисного периода.

Данный индекс показывает относительное изменение стоимости продукции в текущем периоде по сравнению с базисным периодом, как за счет изменения цены , так и за счет изменения количества (объема) отдельных товаров. Таким образом, в индексе вес отсутствует.

Величина показывает абсолютное изменение стоимости продукции.

При выборе весов индекса цен существуют два варианта: индекс Пааше и индекс Ласпейреса.

Агрегатный индекс цен :

(индекс Пааше),

где фактическая стоимость продукции текущего периода;

условная стоимость продукции, реализованной в текущем периоде по базисным ценам.

Индекс Пааше показывает относительное изменение стоимости продукции двух периодов за счет изменения цен . Этот индекс характеризует влияние изменения цен на стоимость продукции, реализованную в отчетном периоде. Индексируемой величиной является цена товара, а весом – количество продукции текущего периода . В качестве весов берется количество продукции текущего периода , так как индекс цены является индексом качественного показателя.

Величина показывает абсолютное изменение общей стоимости продукции за счет изменения цен.

Разность между числителем и знаменателем данного индекса показывает абсолютную экономию (перерасход) средств от снижения (увеличения) цен на продукцию:

В этой связи числитель и знаменатель агрегатного индекса цен можно интерпретировать с точки зрения потребителей. Числитель показывает сумму денег, фактически уплаченную покупателями за товары, приобретенные в текущем периоде. Знаменатель показывает сумму, которую бы заплатили покупатели за те же товары, если бы цены не изменились. При положительной разности числителя и знаменателя индекса возникает экономия населения, а при отрицательной – перерасход населения от изменения цен.

Замечание. В 1864 г. немецкий экономист Э. Ласпейрес предложил в качестве весов использовать продукцию базисного периода :

(индекс Ласпейреса),

где фактическая стоимость продукции базисного периода;

возможная стоимость продукции при ее продаже по новым ценам.

Индекс Ласпейреса показывает влияние изменения цен на стоимость продукции, реализованную в базисном периоде.

Разность не представляет практического интереса, так как показывает прирост стоимости продукции при ее продаже в базисном периоде по ценам текущего периода.

Как правило, при расчетах индекс Ласпейреса больше, чем индекс Пааше. Это объясняется тем, что индексы характеризуют различные качественные особенности изменения цен. Индекс цен Пааше показывает, насколько товары в текущем периоде стали дороже (дешевле) по сравнению с базисным периодом. Индекс цен Ласпейреса показывает, во сколько бы раз подорожали (подешевели) товары из-за изменения цен на них в отчетном периоде.

Также в экономическом анализе достаточно часто используется ещё один вид агрегатного индекса цен - индекс Лоу (общий индекс на средних весах):

, где

В этой формуле в качестве соизмерителя используется средний физический объем продаж . Индекс Лоу используется в расчетах, связанных с закупкой или реализацией товаров в течение длительного периода (по долгосрочным контрактам). Он показывает, во сколько раз в среднем изменился бы объем продаж за счет изменения цен.

Сфера применения индексов зависит от цели исследования. Например, индекс Пааше применяется в случае совместного рассмотрения с индексами стоимости и физического объема продукции. Индекс Ласпейреса применяется для характеристики среднего изменения цен на потребительские товары (потребительскую корзину). В частности, по формуле индекса цен Ласпейреса рассчитывается индекс потребительских цен (ИПЦ). Индекс покупательской способности рубля определяется по формуле .

Замечание. При расчетах следует помнить, что по умолчанию применяется индекс цен Пааше, т.е. индекс с весами текущего периода.

Замечание. По данным о количестве продукции и себестоимости отдельных видов продукции за два периода можно рассчитать агрегатный индекс себестоимости:

.

В этом индексе индексируемой величиной является себестоимость отдельных товаров , а весами – продукция отчетного периода

Индекс себестоимости показывает относительное изменение общих затрат (издержек) на производство за счет изменения себестоимости отдельных товаров.

Числитель индекса отражает затраты на производство продукции отчетного периода, а знаменатель – величину затрат на производство продукции отчетного периода при уровне себестоимости базисного уровня.

Разность между числителем и знаменателем данного индекса показывает сумму экономии (перерасхода) средств от снижения (увеличения) себестоимости продукции:

Средние индексы

 

Общие индексы могут быть представлены не только в агрегатной форме, но и другим способом – путем вычисления средней величины из индивидуальных индексов.

При расчете индексов часть необходимой информации может отсутствовать или базироваться на результатах выборочного наблюдения. Поэтому агрегатная форма общих индексов не применяется. В этом случае используется другая форма общих индексов – средневзвешенные индексы.

Таким образом, средний индекс – это индекс, вычисленный как средняя величина из индивидуальных индексов. Средний индекс всегда равен агрегатному индексу.

Средние индексы используются, когда отсутствуют данные по динамике признаков, но есть их относительное изменение. Средние индексы выводятся из агрегатных индексов и должны быть тождественны им. Для этого необходимо, чтобы слагаемые знаменателя агрегатного индекса были весами индивидуальных индексов.

На практике средние индексы рассчитываются в форме среднего арифметического и среднего гармонического индексов.

Средний арифметический индекс применяется в случае, если известно готовое произведение (выручка от реализации продукции) только базисного периода и изменение индивидуального индекса. Все преобразо­вания производятся в числителе агрегатного индек­са.

Преобразуем агрегатный индекс физического объема продукции в тождественную ему форму средних индексов:

; , .

Таким образом, общий индекс физического объема продукции может быть выражен в форме средней арифметической из индивидуальных индексов физического объема продукции, взвешенных по стоимости продукции базисного периода :

- средний арифметический индекс физического объема продукции.

Среднегармонический индекс применяется в случае, если известно готовое произведение (выручка от реализации продукции), а также изменение индивидуального индекса. Все преобразо­вания производятся в знаменателе агрегатного индекса.

Преобразуем агрегатный индекс цены продукции в тождественную ему форму средних индексов:

; ,

Таким образом, общий индекс цены продукции может быть выражен в форме средней гармонической из индивидуальных индексов цены продукции, взвешенных по стоимости продукции текущего периода :

- средний гармонический индекс цены продукции.

При построении средних индексов следует руководствоваться следующим правилом: для индекса количественного показателя используют формулу среднего арифметического индекса; для индекса качественного показателя (цена, себестоимость и т.д.) – формулу среднего гармонического индекса.

Например, запишем формулы среднего арифметического индекса физического объема продукции и среднего гармонического индекса себестоимости

Средний арифметический индекс производительности труда определяется по формуле:

.

Учитывая, что , можно перейти к агрегатному индексу трудоемкости продукции, в котором весами являются общие затраты времени на производство продукции в текущем периоде.

В средней арифметической форме также рассчитывается индекс производительности труда по трудоемкости, известный как индекс С.Г. Струмилина:

.

Индекс Струмилина показывает относительное изменение производительности труда.

Также средние индексы используются для анализа рынка ценных бумаг (индексы Доу-Джонса, Стэндарда и Пура).


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-08-24; Просмотров: 570; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.054 с.)
Главная | Случайная страница | Обратная связь