Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Сварочный пост для дуговой сварки. Принадлежности и инструменты сварщика



Сварочный пост для дуговой сварки. Принадлежности и инструменты сварщика

Организация рабочего места электросварщика.

Сварочные посты в зависимости от рода применяемого тока и типа источника питания дуги делятся на следующее виды:

• постоянного тока с питанием от однопостового или многопостового сварочного преобразователя или сварочного выпрямителя;

• переменного тока с питанием от сварочного трансформатора.

Сварочные посты по месту расположения могут быть стационарные и передвижные.

Стационарные посты представляют собой открытые сверху кабины для сварки изделий небольших размеров. Каркас кабины металлический. Стены окрашены в светлые тона огнестойкой краской. Окраска стен в темные тона не рекомендуется, так как она плохо поглощает ультрафиолетовые лучи сварочной дуги. Высота сварочного стола 500-600 мм; крышка стола площадью 1 м2, которую изготавливают из листовой стали толщиной около 25 мм. К нижней части крышки или ножки стола приваривают стальной болт, служащий для крепления токопроводящего кабеля от источника тока и для заземления. У стола сбоку имеется два кармана для электродов разных марок. Под ногами у сварщика должен находиться резиновый коврик.

Передвижной пост применяется в случаях сварки изделия крупных форм и необходимости проведения сварки в нестандартных условиях.

Сварочный пост устроен следующим образом (рис. 16).

От сети 1 переменный ток напряжением 220 или 380 В через рубильник 2 подается к источнику питания - сварочному трансформатору 3, где ток трансформируется до напряжения 60-70 В, и по сварочным проводам 4 через зажим 5 и электрододержатель 6 подводится к изделию 7.

Сварочный пост комплектуется:

• источником питания;

• электрододержателем;

• сварочными проводами;

• зажимами для токопроводящего провода;

• сварочным щитком с защитными светофильтрами;

• различными зачистными и мерительными инструментами.

Электрододержатель - приспособление для закрепления электрода и подведения к нему тока. Среди всего многообразия применяемых электрододержателей наиболее безопасными являются пружинные, изготавливаемые по требованиям и классификации ГОСТ 14651-78Е: I типа - для тока 125 А; II типа – для тока 125-315 А; III типа - для тока 315-500 А. Электрододержатели выдерживают без ремонта 8-10 тысяч зажимов. Время замены электрода не превышает 3-4 с. Для ручной дуговой сварки существует несколько типов электрододержателей (рис. 17).

Щитки сварочные изготавливаются двух типов: ручные и головные из легких негорючих материалов по ГОСТу 12.4.035-78. Масса щитка не должна превышать 0, 50 кг.

Защитные светофильтры (затемненные стекла), предназначенные для защиты глаз от излучения дуги, брызг металла и шлака, изготавливаются 13 классов или номеров по ГОСТу 12.4.080-79. Номер светофильтра подбирается в зависимости от силы сварочного тока и индивидуальных особенностей зрения сварщика (табл. 2).

Сварщики обеспечиваются средствами личной защиты, спецодеждой.

Одежда сварщика изготавливается из различных тканей, которые должны удовлетворять двум основным требованиям:

• наружная поверхность одежды должна быть огнестойкой и термостойкой;

• внутренняя (изнаночная) поверхность одежды должна быть влагопоглощающей.

При выполнении сварочных работ сварщик пользуется традиционным инструментом: металлической щеткой для зачистки кромок и удаления шлака; молотком-шлакоотделителем для удаления шлаковой корки; зубилом; рулеткой металлической, угольником, чертилкой.

Организация рабочего места газосварщика.

Для газовой сварки сварочные посты бывают стационарными и передвижными. Наибольшее применение нашел в практике передвижной сварочный пост, оснащенный:

• ацетиленовым генератором, предназначенным для получения ацетилена разложением карбида кальция водой;

• кислородным баллоном для хранения кислорода;

• шлангами для подачи газа от баллона и генератора к сварочной горелке;

• сварочной горелкой для смешивания горючего газа или паров горючего газа кислородом.

В стационарных сварочных постах подача горючего газа и кислорода происходит по трубопроводу.

 

Сварочная дуга

Сварочной дугой называют дугу, представляющую собой длительный устойчивый электрический разряд в газовой среде между электродом и изделием либо между электродами, отличающуюся большим количеством тепловой энергии и сильным световым излучением.

Сварочные дуги квалифицируют по следующим признакам:

• по среде, в которой происходит дуговой разряд; на воздухе - открытая дуга, под флюсом – закрытая дуга; в среде защитных газов;

• по роду применяемого электрического тока - постоянная, переменная;

• по типу электрода - плавящаяся, неплавящаяся;

• по длительности горения - непрерывная, импульсная дуга;

• по принципу работы - прямого действия, косвенная дуга, комбинированная или трехфазная.

Теплота, выделяемая сварочной дугой, не вся переходит в сварной шов. Часть теплоты теряется бесполезно на нагрев окружающего воздуха, плавление электродного покрытия.

Мощность сварочной дуги Q зависит от сварочного тока I и напряжения дуги U:

Q=I∙ U (Вт).

Для повышения устойчивости горения сварочной дуги в электродное покрытие или в защитный флюс вводят элементы (калий, натрий, барий и др.), которые повышают степень ионизации и, следовательно, стабилизации сварочной дуги.

Сварочную дугу можно возбудить без касания электродом свариваемого изделия. Для этого нужно в сварочную цепь параллельно включить источник тока высокого напряжения и высокой частоты (осциллятор). При этом для возбуждения дуги достаточно приблизить конец электрода на расстояние 2-3 мм к поверхности изделия.

Дуговой промежуток подразделяется на три основные области:

• катодную;

• анодную;

• столб дуги.

Различают по длине короткую и длинную дугу.

Длиной дуги называют расстояние от конца электрода до дна кратера на поверхности металла.

Кратером называют углубление на поверхности металла в результате давления на него столба дуги.

Длина дуги определяется диаметром электрода.

Короткой называется дуга, длина которой меньше или равна диаметру электрода. Ее размеры 2 - 4 мм.

Длинная дуга та, которая больше или равна диаметру электрода.

Короткой дугой сваривают, длинной - режут металл.

Чтобы избежать кратера, применяют следующие способы:

• начинают и оканчивают шов на основном металле;

• постепенно удлиняют сварочную дугу и резко ее обрывают отводом в сторону.

В процессе горения дуги жидкий металл с конца электрода переходит в сварочную ванну в виде отдельных капель (капельный способ) и при полуавтоматической сварке струйно.

Перенос капель осуществляется под действием:

• силы тяжести;

• силы поверхностного натяжения;

• электромагнитных сил.

 

Способы контроля качества сварных соединений

 

Рассмотрим неразрушающие способы контроля сварных соединений.

 

Контроль качества сварных соединений проводят для определения дефектов сварных швов, плотности и физико-химических свойств сварного соединения.

 

Контроль качества сварных соединений включает методы контроля, предупреждающие образование дефектов, и методы контроля, выявляющие дефекты.

Методы контроля, предупреждающие дефекты:

· контроль подготовки под сварку, при котором производят проверку качества свариваемого металла, сварочных материалов, контроль подготовки кромок свариваемых деталей и сборки их в узел, контроль состояния сварочного оборудования и оснастки, квалификации сборщиков и сварщиков;

· контроль сварочных работ с проверкой режимов сварки, правильности ведения процесса, порядка наложения швов, зачистки швов и кратеров.

Рутиловые электроды

Более 50% основы для покрытия данного типа изделий является природный концентрат TiO2.

Эксплуатационные преимущества электродов данного типа заключаются в:

· относительно низкой степени вреда, причиняемого сварщику испарениями;

· обеспечении стабильного горения сварной дуги;

· пониженном разбрызгивании металла;

· превосходном формировании шва;

· простоте отделения шлака.

Кислые электроды

Основой покрытия изделий данного типа являются оксиды металлов. Отличительной чертой данных изделий считается низкая стоимость, что позволяет снижать издержки при производстве больших объемов работ.

 

Подготовка металла под сварку.

Перед сваркой после подбора металла по размерам и маркам стали необходимо выполнить следующие операции:

• правку;

• резку;

• обработку кромок и очистку под сварку.

Кромки подготавливают термическими и механическими способами.

В зависимости от толщины свариваемого металла его сварку можно вести как без разделки кромок, так и с разделкой. Разделка кромок металла начинается с 5 мм.

Существуют определенные геометрические параметры разделки кромок.

Обязательно в процессе сварки делают зазор b для проплавления металла на всю его толщину. Его размеры 0, 5-5 мм, в зависимости от толщины свариваемого металла.

Притупление кромок с необходимо для формирования корня шва, и для того, чтобы не проплавить тонкий металл. Его размеры 2-2, 5 мм.

 

Рис. 13. Подготовка металла под сварку

 

β - угол скоса кромки (15-45°);

S и S1 - толщина металла.

Разделка кромок может быть различна в зависимости от толщины металла

 

Основные виды дефектов

Дефекты сварных соединений различают по причинам возникновения и месту их расположения (наружные и внутренние). В зависимости от причин возникновения их можно разделить на две группы.

К первой группе относятся дефекты, связанные с металлургическими и тепловыми явлениями, происходящими в процессе образования, формирования и кристаллизации сварочной ванны и остывания сварного соединения (горячие и холодные трещины в металле шва и околошовной зоне, поры, шлаковые включения, неблагоприятные изменения свойств металла шва и зоны термического влияния).

Ко второй группе дефектов, которые называют дефектами формирования швов, относят дефекты, происхождение которых связано в основном с нарушением режима сварки, неправильной подготовкой и сборкой элементов конструкции под сварку, неисправностью оборудования, недостаточной квалификацией сварщика и другими нарушениями технологического процесса. К дефектам этой группы относятся несоответствия швов расчетным размерам, непровары, подрезы, прожоги, наплывы, незаваренные кратеры и др. Виды дефектов приведены на рис. 1. Дефектами формы и размеров сварных швов являются их неполномерность, неравномерные ширина и высота, бугристость, седловины, перетяжки и т.п.

Виды дефектов сварных швов:

а - ослабление шва.

б - неравномерность ширины,

в - наплыв,

г - подрез,

с - непровар,

с - трещины и поры,

ж - внутренние трещины и поры,

з - внутренний непровар,

и - шлаковые включения

 


 

БИЛЕТ 12

2. Техника выполнения швов ручной дуговой сваркой

Способы выполнения швов зависят от их длины и толщины свариваемого металла. Условно считают швы длиной до 250 мм короткими, длиной 250—1000мм — средними и более 1000мм—длинными.

Короткие швы обычно сваривают на проход. Швы средней длины сваривают либо на проход от середины к краям, либо обратно-ступенчатым способом. Длинные швы также свариваются обратно-ступенчатым способом, или участками вразброс.

Сущность сварки обратно-ступенчатым способом заключается в том, что весь шов разбивается на короткие участки, длиной от 100 до 300мм и сварка на каждом отдельном участке выполняется в направлении, обратном общему направлению сварки с таким расчетом, чтобы окончание каждого данного участка совпадало с началом предыдущего.

В некоторых случаях при определении длины ступени за основу принимают участок, который можно заварить электродом с тем, чтобы переход от участка к участку совместить со сменой электрода.

Сварка обратно-ступенчатым способом применяется с целью уменьшения сварочных деформаций и напряжений.

При сварке металла большой толщины шов выполняется за несколько проходов. При этом заполнение разделки может производиться слоями или валиками При заполнении разделки слоями каждый слой шва выполняется за один проход. При заполнении разделки валиками в средней и верхней частях разделки каждый слой шва выполняется за два или более проходов, путем наложения отдельных валиков. С точки зрения уменьшения деформаций из плоскости первый способ предпочтительнее второго. Однако при сварке стыковых швов не всегда удобно выполнять очень широкие валики в верхней и средней частях разделки. Поэтому на практике 1-й способ чаще применяется при сварке угловых швов, 2-й — стыковых.

При сварке толстого металла выполнение каждого слоя на проход (фиг. 116, а) является нежелательным, так как это происходит к значительным деформациям, а также может привести к образованию трещин в первых слоях. Образование трещин вызывается тем, что первый слой шва перед наложением второго слоя успевает полностью (или почти полностью) остыть. Вследствие большой разницы в сечениях наплавленного слоя и свариваемого металла все деформации, возникающие при остывании неравномерно нагретого металла, сконцентрируются в металле шва. При этом запас пластичности может оказаться недостаточным, что приведет к трещинообразованию.

При каскадном способе заполнения разделки весь шов разбивается на короткие участки и сварка осуществляется таким образом, что по окончании сварки слоя на данном участке, не останавливаясь, продолжают выполнение следующего слоя на соседнем участке.

При этом каждый последующий слой накладывается на неуспевший еще остыть металл предыдущего слоя. Сварка горкой является разновидностью каскадного способа. Обычно сварка горкой ведется от середины шва к краям одновременно двумя сварщиками.

Если по окончании шва сразу оборвать дугу, то образуется незаполненный металлом кратер, который ослабляет сечение шва и может явиться началом образования трещин. Поэтому при окончании шва всегда должна производиться заварка кратера, которая осуществляется сваркой в течение некоторого времени без перемещения электрода вдоль свариваемых кромок, а затем постепенным удлинением дуги до ее обрыва.

2. Организационные мероприятия по повышению производительности сварки

Повышение производительности ручной дуговой сварки является весьма актуальной задачей в связи с тем, что в промышленности, строительстве и других, отраслях народного хозяйства ручной сваркой занимаются еще десятки тысяч рабочих-электроварщиков.

К чисто организационным мероприятиям повышения производительности труда сварщиков относятся: своевременное обеспечение сварщиков исправным, подключенным к сети сварочным оборудованием, сварочными материалами (электродами, защитным газом), сварочным инструментом, шлангами, кабелем, спецодеждой, средствами индивидуальной защиты; предоставление сварщику оборудованного рабочего места и обеспечение безопасных подходов к нему; своевременное предоставление сварщику подготовленных для сварки деталей, конструкций и технологической документации (инструктивных указаний) по технологии сварки; обеспечение сварщика необходимыми производственно-бытовыми условиями.

К организационно-техническим мероприятиям относятся: своевременное и быстрое обслуживание сварщика квалифицированным электромонтажником для подключения оборудования и устранения неисправностей; обеспечение наиболее рациональным инструментом (электрододержателем, инструментом для зачистки швов и др.); обеспечение приспособлениями для быстрого поворота изделий или их кантовки; изготовление наиболее эффективных конструкций с минимальным количеством наплавленного металла в готовом изделии. Четкое выполнение организационных и организационно-технических мероприятий наряду с внедрением прогрессивных форм организации труда (бригадный подряд, внедрение оплаты с учетом КТУ и др.) обеспечит повышение производительности труда не менее чем на 15—20 %.

 

Большое значение имеют технические мероприятия, внедрение которых в последнее время замедлилось из-за отсутствия инициативы и стремления к их осуществлению, неправильной организации труда.


 

БИЛЕТ 13

 

Выбор режима при сварке

Все параметры режима сварки можно разделить на основные и дополнительные. Основные параметры - это величина и полярность тока, диаметр электрода, напряжение на дуге, скорость сварки. Дополнительные параметры - состав и толщина покрытия электрода, положение электрода и положение изделия.

Итак, на что же влияют основные параметры?

Сварочный ток. Увеличение его вызывает (при одина­ковой скорости сварки) рост глубины проплавления (провара), что объясняется изменением погонной энергии (теплоты, приходящейся на единицу длины шва) и частично изменением давления, оказываемого столбом дуги на поверхность сварочной ванны

Под режимом сварки понима­ют совокупность контролируемых параметров, определя­ющих условия сварки.

Основные параметры: сила сварочного тока; на­пряжение дуги; скорость сварки; род и полярность тока.

Дополнительные параметры: положение шва в пространстве; число проходов; температура окружающей среды.

Силу сварочного тока устанавливают в зависи­мости от диаметра электрода, а диаметр электрода выби­рают в зависимости от толщины свариваемого изделия.

При увеличении диаметра электрода и неизменном сварочном токе плотность тока уменьшается, что приво­дит к блужданию дуги, увеличению ширины шва и умень­шению глубины провара. Чем больше диаметр электрода, тем меньше допустимая плотность тока, так как ухудша­ются условия охлаждения.

Напряжение дуги зависит от ее длины. Оптималь­ная длина дуги выбирается между минимальной и макси­мальной. Длинную дугу применять не рекомендуется.

Скорость сварки выбирается так, чтобы сварочная ванна заполнялась электродным металлом и возвышалась над поверхностью кромок с плавным переходом к основ­ному металлу без подрезов и наплывов.

Род и полярность тока выбирают в зависимости от способа сварки и свариваемых материалов. Сварку на по­стоянном токе ведут на прямой или обратной полярности.

Прямую полярность используют при сварке:

· с глубоким проплавлением основного металла;

· низко- и среднеуглеродис­тых и низколегированных ста­лей толщиной 5 мм и более элект­родами с фтористо-кальциевым покрытием (марок УОНИ-13/45, УОНИ-13/55 и др.);

· чугуна, проплавлением основного металла;

Род и полярность тока также влияют на форму и размеры шва.

Диаметр электрода выбирают в зависимости от толщины свариваемого металла, положения, в котором выполняется сварка, а также от вида соединения и формы подготовленных кромок под сварку.

Напряжение определяет, главным образом, ширину шва.

Сила тока в основном зависит от диаметра электро­да, а также от длины его рабочей части, состава покрытия, положения сварки. Чем больше ток, тем выше производительность, т. е. больше наплавляется металла.

 

2. Влияние химических элементов на свойства сталей

 

В состав стали кроме железа и углерода входят и другие химические элементы, которые содержатся в ней в малых количествах из-за несовершенства технологии производства либо специально вводятся в нее для придания особых свойств. В последнем случае эти элементы называются легирующими. Все элементы в стали условно подразделяются на полезные и вредные.

Полезные элементы:

· углерод — определяет прочность, вязкость и закаливаемость стали. Содержание углерода до 0, 25 % не влияет на свариваемость. Увеличение содержания углерода в стали ухудшает ее свариваемость;

· кремний — при содержании до 0, 3% повышает пределы текучести и прочности, но ухудшает свариваемость и снижает ударную вязкость стали; при содержании до 0, 6% улучшает упругие свойства стали;

· марганец — при содержании до 1, 8% оказывает незначительное влияние на свариваемость стали, но способствует ее закалке; при высоком содержании сварка затруднена, поскольку велика вероятность появления трещин;

· хром — при содержании от 0, 3% до 35% повышает твердость и прочность стали, однако снижает ее пластичность и вязкость. При высокой температуре образует карбиды, затрудняющие процесс сварки;

· никель — улучшает прочностные и пластические свойства стали; на свариваемость практически не влияет;

· молибден — улучшает прочностные характеристики стали, делает ее теплоустойчивой, увеличивает твердость стали и несущую способность конструкций при ударных нагрузках и высоких температурах. Затрудняет сварку, так как активно окисляется и выгорает;

· ванадий — повышает вязкость и пластичность стали, улучшает ее структуру, способствует закалке, ухудшает свариваемость;

· вольфрам — увеличивает твердость и работоспособность стали при высоких температурах, ухудшает свариваемость;

· титан — повышает коррозионную стойкость стали, способствует образованию горячих трещин при сварке;

· медь — повышает прочность и коррозионную стойкость стали, не влияет на свариваемость.

Вредные элементы:

· сера — придает красноломкость, т.е. большую хрупкость при высоких температурах, оказывает отрицательное влияние на свариваемость;

· фосфор — придает хладноломкость — хрупкость при нормальных температурах, отрицательно влияет на свариваемость;

· азот — увеличивает хрупкость стали и способствует ее старению;

· кислород и водород — ухудшают структуру стали и способствуют повышению ее хрупкости.

 


 

БИЛЕТ 14

 

1. Сварочные флюсы. Присадочные материалы

Сварочный флюс – гранулированный порошок с размером зерен 0, 2–4 мм, предназначенный для подачи в зону горения дуги при сварке. Под действием высокой температуры флюс расплавляется, при этом

· создает газовую и шлаковую защиту сварочной ванны;

· обеспечивает стабильность горения дуги и переноса электродного металла в сварочную ванну;

· обеспечивает требуемые свойства сварного соединения;

· выводит вредные примеси в шлаковую корку.

Подавляющее большинство швов при сварке выполнили с применением присадочных материалов. Роль присадочного материала. заключается не только в получении необходимой геометрии шва, но и в обеспечении его высоких эксплуатационных характеристик при минимальной склонности к образованию дефектов.

 

В большинстве случаев состав присадочного металла сравнительно мало отличается от химического состава свариваемого металла.

 

Присадочные материалы разрабатывают применительно к конкретным группам свариваемых металлов и сплавов или даже к их отдельным маркам. При этом учитывают и методы сварки, определяющие потери отдельных элементов. Присадочный металл должен быть более чистым по примесям, содержать меньшие количества газов и шлаковых включений.

 

Присадочные материалы используют в виде металлической проволоки сплошного сечения или порошковой проволоки (с порошковым сердечником). Применяют также прутки, пластины, лепты.

 

К сварочной проволоке предъявляют высокие требования по состоянию поверхности, предельным отклонениям по диаметру, овальности и другим показателям.

 

Высокое качество сварочной проволоки и других присадочных материалов сохраняется при тщательной их упаковке и консервации, а также правильном хранении и транспортировке. Наиболее часто металлическую сварочную проволоку поставляют в виде мотков (бухт), пропитанных консервирующей смазкой. Поверхность мотка обертывают влагонепроницаемой бумагой, полимерной пленкой и т. п. В стадии развития находятся способы упаковки мотков проволоки в герметичную тару без применения Консервирующей смазки. Каждая партия проволоки (моток, бухта) должна быть снабжена сертификатом завода-изготовителя. В сертификате указаны марка проволоки, ее химический состав, номер плавки и другие сведения.

 

Присадочные материалы перед сваркой должны проходить тщательную очистку поверхности. Наличие следов смазки или других загрязнений не допускается. В большинстве случаев требуется и очистка от оксидов. Для удаления жировых загрязнений применяют обезжиривание. Оксидную пленку удаляют травлением, химическим и электрохимическим полированием.

 

Для сварки необходимо применять преимущественно присадочные материалы, выпускаемые по специализированным стандартам или техническим условиям. Промышленность выпускает присадочные материалы для сварки сталей, чугуна, алюминия, меди, титана и их сплавов.

2. Кислородно-дуговая и воздушно дуговая резка

Кислородно-дуговая резка заключается в том, что разрезаемый металл разогревают электрической дугой, а затем сжигают струей кислорода. Обычно режущая струя кислорода следует за направлением движения электрода. Для этого способа резки применяют специальные резаки, обеспечивающие закрепление электрода и подвод кислорода к месту реза. При резке применяют угольные, графитированные или стальные электроды.

 

Кислородно-дуговой резкой можно резать углеродистые, легированные, нержавеющие стали, чугун и цветные металлы. По чистоте получаемого реза она почти не уступает газокислородной, а по производительности в некоторых случаях превосходит ее.

 

воздушно дуговая резка: Сущность этого способа резки заключается в том, что металл расплавляют теплом электрической дуги, а затем выдувают из места реза струей сжатого воздуха. Способ можно использовать для разделительной и поверхностной резки листового и профильного проката, для удаления прибылей с отливок, головок заклепок, дефектных участков сварных швов, трещин, раковин, а также для разделки канавок и съема фасок. Резать можно в любых пространственных положениях. Качество реза почти не уступает газокислородной.

 

Резку производят омедненными угольными или графитированными электродами круглого, квадратного или пластинчатого сечения на постоянном токе при обратной полярности. Пластинчатые электроды применяют только для поверхностной резки.

 

Резку выполняют специальными резаками, обеспечивающими зажатие электрода, подвод к электроду тока и подачу сжатого воздуха к месту реза. Давление сжатого воздуха должно быть не менее 5 кгс/см2.


 

БИЛЕТ 15

 

1. Карбит кальция и горючие газы

Карбид кальция является основным сырьем для получения ацетилена.

 

Карбид кальция — химическое соединение кальция с углеродом (СаС2). Карбид кальция представляет собой твердое вещество темно-серого или коричневого цвета. Удельный вес карбида кальция 2, 22 кгс/см3. Карбид кальция имеет резкий чесночный запах и жадно поглощает воду. Его получают в электрических дуговых печах при температуре 1900—2300° С сплавлением кокса с негашеной известью по реакции:

 

СаО + ЗС = СаС3 + СО

 

Расплавленный карбид кальция сливают из печи в специальные изложницы, в которых он остывает и затвердевает. Затвердевший карбид кальция дробят и сортируют на куски размером от 2 до 80 мм. По ГОСТ 1460—76 установлены следующие размеры (грануляция) кусков карбида кальция: 2× 8; 8 X 15; 15 X 25; 25 X X 80 мм.

 

Технический карбид кальция содержит 75% химически чистого карбида кальция, остальное — примеси (негашеная известь, окислы железа, магния, алюминия и др.).

 

Карбид кальция активно взаимодействует с водой и интенсивно поглощает влагу из воздуха, выделяя при этом ацетилен. Так как карбид кальция поглощает атмосферную влагу, его упаковывают в специальные барабаны из кровельной стали вместимостью 100 и 130 кг. На складах и рабочих местах его хранят в специальных бидонах, снабженных герметической крышкой. Вскрывать барабаны с карбидом кальция необходимо специальным латунным ножом или латунным зубилом и молотком с соблюдением мер безопасности, исключающих возможность образования искры. При раскупорке барабана за счет влаги воздуха может образоваться взрывоопасная ацетилено-воздушная смесь, что при наличии искры может привести к взрыву.

 

Реакция взаимодействия карбида кальция с водой протекает бурно с выделением большого количества тепла. Теоретически для разложения 1 кг карбида кальция требуется 0, 562 кг воды, но так как реакция взаимодействия карбида кальция с водой идет с большим выделением тепла, практически берут от 5 до 20 кг воды. Скорость разложения карбида кальция зависит от температуры и чистоты воды, грануляции и чистоты карбида кальция. Чем выше чистота и температура воды, тем быстрее разлагается карбид кальция. Чем мельче куски карбида кальция, тем больше скорость его разложения.

 

Например, карбид кальция размером 8X15 мм разлагается в течение 6, 5 мин, а размером 50 X 80 мм — за 13 мин.

 

Карбидная пыль (частицы меньше 2 мм) при взаимодействии с водой разлагается почти мгновенно, поэтому ее нельзя применять в обычных ацетиленовых генераторах, рассчитанных для работы на кусковом карбиде кальция, так как это может привести к взрыву. Для разложения карбидной ныли применяют ацетиленовые генераторы специальной конструкции. Из 1 кг карбида кальция в зависимости от его чистоты и грануляции можно получить от 235 до 285 дм3 ацетилена.

 

ГОСТ 1460—76 устанавливает следующие нормы выхода ацетилена в зависимости от размеров кусков карбида кальция.

 

2. Виды и способы сварки и плавления с применением давления

Вид сварки – объединяет группу сварочных процессов, в которых используется один и тот же источник теплоты для нагрева и расплавления металла. Так, например, в группе сварки давлением различают следующие виды сварки – электрическую контактную (сопротивлением), газопрессовую, кузнечную и т.д. В группе сварки плавлением – газовую, электродуговую, шлаковую и др.

 

Способ сварки – объединяет варианты данного вида сварки, отличающиеся друг от друга принципиальными изменениями условий ведения процессов. Так, например, при электрической сварке давлением применяют следующие способы сварки – стыковой, точечный, шовный. При электрической дуговой сварке плавлением используется также различные способы, а именно:

· по свойствам электродов – плавящимся (металлическим) или неплавящимся (угольным, вольфрамовым) электродом;

· по степени механизации – ручная, полуавтоматическая и автоматическая;

· по роду защиты дуги от окружающего воздуха – электродами с тонкими (стабилизирующими) покрытиями, электродами с толстыми (качественными) покрытиями, под флюсом, в защитных газах, с комбинированной защитой (покрытие и защитный газ), в контролируемой атмосфере и в вакууме;

· по виду дуги – свободно горящей и сжатой (плазменной), прямого и косвенного действия.

 

Виды и способы сварки с применением давления

· газопрессовая сварка

· термитная сварка

· электроконтактная сварка

· стыко-дуговая сварка вращающейся дугой

· сварка трением

· прессовая («холодная») сварка

· сварка ультразвуком

· диффузионная сварка в вакууме

· сварка взрывом

 


 

БИЛЕТ 16

1. Основные требования безопасности труда при дуговой сварке

Основными опасностями и вредностями, приводящими к производственным травмам при сварке, являются:

· поражение электрическим током при электросварочных работах;

· поражение зрения и открытой поверхности кожи излучением электрической дуги; отравление организма вредными газами, пылью и испарениями, выделяющимися при сварке;

· травмы от взрывов баллонов сжатого газа, ацетиленовых генераторов и сосудов из-под горючих веществ;

· пожарная опасность и ожоги;

· механические травмы при заготовительных и сборочно-сварочных операциях;

· опасность радиационного поражения при контроле сварных соединений радиационными методами.

Каждый рабочий при поступлении на работу проходит инструктаж или специальный техминимум по технике безопасности. Техника безопасности - совокупность технических и организационных мероприятий, направленных на создание безопасных и здоровых условий труда.

Ответственность за организацию и состояние техники безопасности на предприятиях несет администрация этих предприятий.

Электробезопасность.

Поражение электрическим током происходит при прикосновении с токоведущими частями электропроводки и сварочной аппаратуры, применяемой для дуговой, контактной и лучевой видов сварки. При поражении электрическим током пострадавшему необходимо оказать помощь: освободить от электропроводов (с соблюдением техники безопасности) обеспечить доступ свежего воздуха, при потере пострадавшим сознания немедленно вызвать скорую медицинскую помощь, а до прибытия врача делать искусственное дыхание.

Защита зрения и открытой поверхности кожи.

Электрическая сварочная дуга создает три вида излучения: световое, ультрафиолетовое, инфракрасное. Световые лучи оказывают ослепляющее действие, так как их яркость значительно превышает допустимые нормы Ультрафиолетовое излучение даже при кратковременном действии в течение нескольких секунд вызывают заболевание глаз вызываемое электро офтальмией. Оно сопровождается острой болью резью в глазах, слезотечением, спазмами век. Продолжительное действие ультрафиолетового излучения приводит к ожогам кожи. Инфракрасное излучение при длительном действии вызывает помутнение хрусталиков глаз (катаракта), что может привести к ослаблению и потере зрения, тепловое действие этих лучей вызывает ожоги кожи.

Защита зрения и кожи лица при дуговой сварке обеспечивается применением щитков, масок пли шлемов из жаростойких диэлектриков (фибры, пропитанной специальным раствором фанеры, и т. д.) с защитными стеклами - светофильтрами (размер 52х102 мм), задерживающих и поглощающих излучение дуги.

Пожарная безопасность.

Причинами пожара при сварочных работах могут быть искры и капли расплавленного металла и шлака, неосторожное обращение с пламенем горелки при наличии горючих материалов вблизи рабочего места сварщика. Опасность пожара особенно следует учитывать на строительно-монтажных площадках и при ремонтных работах в неприспособленных для сварки помещениях.

2. Установка УРХС-4 для кислородно-флюсовой резки

Техническая характеристика установки УРХС-4

Скорость резки, мм/мин:

прямолинейной............. 270-760

фигурной................ 170-475

Давление кислорода, кгс1см........ 5-10

» ацетилена, мм вод ст........ Не ниже 300

 

» флюсоподающего кислорода, кгс/см 0, 35-0, 45

Расход;

кислорода, м/ч............ 8-25

флюса, кг/ч.............. 6-9

ацетилена, м/ч............ 0, 8-1, 1

Емкость флюсопитателя, кг........ 20

С 1967 г. вместо установки УРХС-4 промышленностью выпускается установка УРХС-5 конструкции ВНИИАвтогенмаш, той же технической характеристики и принципа работы, но отличающаяся некоторыми конструктивными особенностями флюсопитателя. Установка УРХС-5 комплектуется резаком РАФ-1-65 и флюсопитателем ФП-1-65.

Для резки нержавеющих сталей толщиной от 200 до 500 мм применяется установка УРХС-6 конструкции ВНИИАвтогенмаш, комплектуемая резаком РАФ-2-65 и флюсопитателем ФП-2-65. По конструкции основных узлов установка УРХС-6 аналогична установке УРХС-5.


Поделиться:



Популярное:

  1. Cодержательные и организационные особенности построения курса «Основы технологии интеллектуальной адаптации коренных народов северных регионов»
  2. Dermal mask, Коллагеновая тканевая маска для лица, 23гр -
  3. I. Его руки подняты для благословения.
  4. I. Смотрите на Него, приготовляющего для Себя престол.
  5. I. ТИТУЛ «ИНТЕРНАЦИОНАЛЬНЫЙ ЧЕМПИОН ПО КРАСОТЕ» (C.I.B.) ДЛЯ ПОРОД С ОБЯЗАТЕЛЬНЫМИ И НЕОБЯЗАТЕЛЬНЫМИ РАБОЧИМИ ИСПЫТАНИЯМИ СОГЛАСНО НОМЕНКЛАТУРЕ FCI.
  6. II. Извлеки урок для совести.
  7. II. Путивль. – Иностранцы в России. – Отношение к ним русских. – Сербский митрополит. – Посещение патриарха воеводой. – Описание города Путивля, крепости и церкви.
  8. II. Сцена, описанная апостолом Иоанном
  9. II. ТЕКСТЫ ДЛЯ РАБОТЫ НАД ГОЛОСОМ.
  10. III. БАЗИСНЫЕ РАЗДЕЛЫ ДЛЯ ПОВТОРЕНИЯ
  11. III. От талмудического к психоаналитическому постижению души. Годы до эмиграции 1933 г.
  12. III. Реакции, характерные только для альдегидов


Последнее изменение этой страницы: 2016-08-24; Просмотров: 1265; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.147 с.)
Главная | Случайная страница | Обратная связь