Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ



Статистическая гипотеза — это предположение

- о виде закона распределения («данная генеральная совокупность нормально распределена (равномерно распределена, и т.д.)»);

- о значениях его параметров («генеральное среднее равно нулю»);

- об однородности данных («эти две выборки извлечены из одной генеральной совокупности»).

Статистическая проверка гипотезы состоит в выяснении того, согласуются ли результаты наблюдений (выборочные данные) с нашим предположением.

Результатом проверки может быть отрицательный ответ: выборочные данные противоречат высказанной гипотезе, поэтому от нее следует отказаться. В случае ответа неотрицательного (выборочные данные не противоречат гипотезе) гипотезу принимают в качестве одного из допустимых решений (не единственно верного).

Различают основную (нулевую) гипотезу (гипотеза, которая проверяется, ) и альтернативную (конкурирующую, противопоставленную основной, ). Например, если нулевая гипотеза : МХ= 10 (т. е. математическое ожидание нормально распределенной величины равно 10), тогда гипотеза , может иметь вид : МХ ≠ 10.

Цель статистической проверки гипотез: на основании выборочных данных принять решение о справедливости основной гипотезы или отклонить в ее пользу альтернативной.

Так как проверка осуществляется на основании выборки, а не всей генеральной совокупности, то существует вероятность, возможно, очень малая, ошибочного заключения.

Так, нулевая гипотеза может быть отвергнута, в то время как в действительности в генеральной совокупности она является справедливой. Такую ошибку называют ошибкой первого рода, а её вероятность — уровнем значимости и обозначают a (стандартные значения a: 0.1, 0.05, 0.01, 0.001). Возможно, что нулевая гипотеза принимается, в то время как в генеральной совокупности справедлива альтернативная гипотеза. Такую ошибку называют ошибкой второго рода, а её вероятность обозначают Проверка статистических гипотез осуществляется с помощью статистического критерия K — правила (функции от результатов наблюдений), определяющего меру расхождения результатов наблюдений с нулевой гипотезой. Вероятность называют мощностью критерия.

Замечание. Ошибка первого рода состоит в том, что будет отвергнута правильная гипотеза. Ошибка второго рода состоит в том, что будет принята неправильная гипотеза.

Пример 4.9. Пусть основная гипотеза состоит в том, что предприятие получает прибыль. Если это правильная гипотеза, то ошибка первого рода состоит в том, что данная гипотеза отвергается. Если принимается решение о том, что прибыль предприятие не получает, то это ошибка второго рода.

Иногда ошибку первого рода называют «альфа-риск» (a-риск) а ошибку второго рода «бета-риск» (b-риск).

Из двух критериев, характеризующихся одной и той же вероятностью выбирают тот, которому соответствует меньшая ошибка 2-го рода, т.е. большая мощность. Уменьшить вероятности обеих ошибок и одновременно можно, увеличив объем выборки.

Значения критерия K разделяются на две части: область допустимых значений (область принятия гипотезы ) и критическую область (область принятия гипотезы ). Критическая область состоит из тех же значений критерия К, которые маловероятны при справедливости гипотезы . Если значение критерия K, рассчитанное по выборочным данным, попадает в критическую область, то гипотеза отвергается в пользу альтернативной в противном случае мы утверждаем, что нет оснований отклонять гипотезу .

Пример 4.10. Для подготовки к зачету преподаватель сформулировал 100 вопросов (генеральная совокупность) и считает, что студенту можно поставить «зачтено», если тот знает 60 % вопросов (критерий). Преподаватель задает студенту 5 вопросов (выборка из генеральной совокупности) и ставит «зачтено», если правильных ответов не меньше трех. Гипотеза : «студент курс усвоил», а множество область принятия этой гипотезы. Критической областью является множество — правильных ответов меньше трех, в этом случае основная гипотеза отвергается в пользу альтернативной «студент курс не усвоил, знает меньше 60 % вопросов».

Студент А выучил 70 вопросов из 100, но ответил правильно только на два из пяти, предложенных преподавателем, — зачет не сдан. В этом случае преподаватель совершает ошибку первого рода.

Студент Б выучил 50 вопросов из 100, но ему повезло, и он ответил правильно на 3 вопроса — зачет сдан, но совершена ошибка второго рода.

Преподаватель может уменьшить вероятность этих ошибок, увеличив количество задаваемых на зачете вопросов.

Алгоритм проверки статистических гипотез сводится к п.п. 1) —6):

1) сформулировать основную и альтернативную гипотезы;

2) выбрать уровень значимости ;

3) в соответствии с видом гипотезы выбрать статистический критерий для ее проверки, т.е. случайную величину K, распределение которой известно;

4) по таблицам распределения случайной величины K найти границу критической области (вид критической области определить по виду альтернативной гипотезы );

5) по выборочным данным вычислить наблюдаемое значение критерия

6) принять статистическое решение: если попадает в критическую область — отклонить гипотезу в пользу альтернативной ; если попадает в область допустимых значений, то нет оснований отклонять основную гипотезу.

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-08-24; Просмотров: 483; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.01 с.)
Главная | Случайная страница | Обратная связь