Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


УСЛОВНАЯ ВЕРОЯТНОСТЬ. ВЕРОЯТНОСТЬ ПРОИЗВЕДЕНИЯ СОБЫТИЙ



Определение2.2. Вероятность события А, вычисленная при условии, что произошло событие В, называется условной вероятностью события А при наличии события В и обозначается Р(А|В).

Пример 2.10. Опыт: подбрасывание двух монет. События:

А = {выпадение «орла» на обеих монетах};

В = {выпадение «орла» на одной из монет}.

Найти вероятность Р(А). Общее число возможных исходов опыта n=4 (оо, ор, рр, ро), благоприятствующий исход один (оо), следовательно, Р(А)=1/4. (Здесьобозначено за " о" " орел", за " р" " решка" ).

Найти теперь условную вероятность Р(А|В). Поскольку известно, что произошло событие В, число возможных исходов испытания п–1(оо, ор, ро), благоприятствующий исход по–прежнему один, следовательно, Р(А|В)=1/3.

Теорема . Вероятность произведения двух событий А и В, равна произведению вероятности одного из этих событий на условную вероятность другого при наличии первого:

Р(АВ) = Р(А)Р(В|А)или Р(АВ) = Р(В)Р(А|В). (2.1)

Эта теорема обобщается на любое конечное число событий следующим образом:

(2.2)

Определение2.3. Два события называются независимыми, если появление любого из них не изменяет вероятности другого, т.е. события А и В независимы, если Р(А|В)(А).

Из формул (2.1) следует, что если выполняется равенство Р(А|В)(А), .то выполняется и равенство Р(В\А)(В).

Определение2.4. Несколько событий, А1, А2, ..., Ап, называются независимыми в совокупности (или просто независимыми), если появление любых из них не изменяет вероятностей остальных. Для независимых событий формула (2.2) принимает вид:

Р( А1 А2...Ап ) = Р( А1 )× Р( А2 ×...× Р( Ап ).

Пример 2.11. Из урны, содержащей 3 белых и 7 черных шаров, наудачу извлекают два шара. Найти вероятность того, что оба шара белые.

Решение. Считаем, что шары извлекаются поочередно. Пусть

А = {первый шар – белый}, В = {второй шар – белый}, тогда АВ – {оба шара – белые}.

По теореме умножения вероятностей Р(АВ)(А)Р(В|А). Согласно классическому определению вероятности Р(А)=3/10, Р(В|А)=2/9.Следовательно, Р(АВ)= (3/10) × (2/9).

Пример 2.12. Два стрелка стреляют по одной мишени. Вероятность поражения мишени первым стрелком равна 0.6, вторым – 0.8. Найти вероятность того, что в мишени будет две пробоины.

Решение. Введем в рассмотрение события, вероятности которых известны:

А = {поражение мишени первым стрелком},

В = {поражение мишени вторым стрелком}.

Интересующее нас событие выразим через эти события. Для того, чтобы имело место событие С={две пробоины в мишени}, надо, чтобы произошли вместе события А и В, т.е. С=АВ.

Естественно считать события А и В независимыми, поэтому

Р(С)(А) × Р(В)=0.6× 0.8.

 

ВЕРОЯТНОСТЬ СУММЫ СОБЫТИЙ

Теорема 2.1. Вероятность суммы двух несовместных событий равна сумме вероятностей этих событий:

Теорема 2.2. Для любого события А вероятность противоположного события А выражается равенством

Р(`А) = 1 – Р(А)

Теорема 2.3 . Вероятность суммы двух совместных событий равна сумме вероятностей этих событий минус вероятность их совместного появления:

Р(А + В) = Р(А)+ Р(В) – Р(АВ).

Теорема сложения обобщается на любое конечное число событий следующим образом:

(2.3)

Если события А1, А2, ..., Аппопарно несовместные, то формула (2.3) принимает вид:

Замечание. При решении задач с использованием формулы (2.3) приходится производить громоздкие вычисления, поэтому часто выгоднее перейти к противоположным событиям, т.е. вместо вероятности суммы событий А12+...+Ап находить вероятность произведения противоположного события . Очевидно, что эти два события противоположны, поэтому

(2.4)

Пример 2.13. В условиях примера 2 предыдущего пункта найти вероятность появления хотя бы одной пробоины.

Решение. Данное событие есть сумма событий А и В, причем эти события совместные, поэтому вероятность интересующего нас события равна Р(А + В) = Р(А) + Р(В) – Р(АВ). Ранее было найдено, что Р(АВ)=0.48, следовательно, Р(А + В) = 0.6 + 0.8 – 0.48 = 0.92.

Пример 2.14. Устройство содержит четыре независимо работающих элемента и сохраняет работоспособность, если работает хотя бы один из элементов. Вероятности безотказной работы элементов в течение определенного срока соответственно равны 0.9, 0.8, 0.7 и 0.6. Найти вероятность безотказной работы устройства.

Решение. Пусть события А1 А2, А3и А4означают безотказную работу соответственно первого, второго, третьего и четвертого элементов. Событие А={безотказная работа устройства} есть сумма событий: А=А1234.События А1 А2, А3и А4совместные, поэтому вероятность Р(А)надо вычислять по формуле (2.3). Чтобы упростить вычисления, воспользуемся формулой (2.4):

.

Так как события А1 А2, А3и А4независимые, то противоположные события также независимы, поэтому

= (1 – 0.9)(1 – 0.8)(1 – 0.7)(1 – 0.6) = 0.0024; и

Р(А) = 1 – 0.0024 = 0.9976.

Пример 2.15. Производится три независимых выстрела по мишени. Вероятности попадания в мишень при первом, втором и третьем выстрелах соответственно равны 0.2, 0.5, 0.4. Найти вероятность того, что будет ровно два попадания в мишень.

Решение. Событие А={ровно два попадания в мишень} выражается через события А1={попадание при первом выстреле}, А2={попадание при втором выстреле), А3={попадание при третьем выстреле} следующим образом:

Отсюда, учитывая несовместность суммируемых произведений событий и независимость событий А1, А2, А3, находим

Пример 2.16. В двух урнах находятся шары, отличающиеся только цветом: в первой урне 5 белых шаров, 11 черных и 8 красных, во второй 10 белых, 8 черных и 6 красных. Из обеих урн наудачу извлекают по одному шару. Найти вероятность того, что оба шара одного цвета.

Решение. Введем в рассмотрение следующие события:

В1={извлечение белого шара из первой урны},

В2={извлечение белого шара из второй урны},

С1={извлечение черного шара из первой урны},

С2={извлечение черного шара из второй урны},

D1={извлечение красного шара из первой урны},

D2={извлечение красного шара из второй урны}.

Выразим событие А= {извлечение шаров одного цвета} через эти события:

А= В1 В2+ С1 С2+ D1 D2

Следовательно,

Р(А) = Р(В1)Р(В2) + Р(С1)Р(С2) + Р(D1)P(D2).

Вероятности событий В, С, D найдем из классического определения: Р(В1)=5/24, Р(В2)=10/24, Р(С1)=11/24, Р(С2)=8/24, Р(D1)=8/24, P(D2)=6/24.

Таким образом, получаем

 

ФОРМУЛА ПОЛНОЙ ВЕРОЯТНОСТИ

 

Пусть А – некоторое событие, которое может появиться совместно с одним из ряда попарно несовместных событий Н1, Н2, …, Нn образующих полную группу ( ). Будем называть события Н гипотезами.

Теорема 2.4 . Вероятность события А, которое может произойти вместе с одной из гипотез Н1, Н2, …, Нn, равна сумме парных произведений вероятностей этих гипотез на соответствующие им условные вероятности события А:

Эта формула называется формулой полной вероятности.

Пример 2.17. Первый станок производит 25%, второй – 35%, третий – 40% всех изделий. Брак в их продукции составляет соответственно 5%, 4% и 2%. Найти вероятность того, что взятое наугад изделие окажется бракованным.

Решение. Введем гипотезы:

Н1={взятое изделие изготовлено на первом станке},

Н2={взятое изделие изготовлено на втором станке},

Н3={взятое изделие изготовлено на третьем станке}.

События Н1, Н2и Н3 несовместные, образуют полную группу, и событие А ={взятое изделие – брак} происходит вместе с одним из них, следовательно, они действительно могут быть взяты в качестве гипотез для события А. Согласно формуле полной вероятности

По условию задачи

Р(Н1)= 0.25, Р(Н2)=0.35, Р(Н3)=0.40, =0.05,

=0.04, =0.02,

следовательно, Р(А)= 0.25 • 0.05 + 0.35 • 0.04 + 0.40 • 0.02 = 0.0345.

Замечание. Вероятности характеризуют возможность осуществления некоторых условий , а возможность появления А при этих условиях.

 

ФОРМУЛА БАЙЕСА

Пусть событие А может произойти совместно с одной из гипотез Н1, Н2, …, Нn. Если до проведения опыта были известны вероятности гипотез , а в результате опыта произошло событие А, то условные вероятности гипотез вычисляются по формуле Байеса:

 

Пример 2.18. Первый станок производит 20%, а второй 80% всех деталей. Брак в их производстве составляет соответственно 4% и 2%. Взятая наугад деталь оказалась бракованной. Найти вероятность того, что эта деталь изготовлена на первом станке.

Решение. Введем две гипотезы для события А={взятая деталь оказалась бракованной}:

Н1={взятая деталь изготовлена на первом станке},

Н2={взятая деталь изготовлена на втором станке}.

Из условия задачи известно: Р(Н1)= 0.2, Р(Н2)=0.8, =0.04, =0.02.. По формуле Байеса находим

Замечание. Формула Байеса указывает путь использования новых экспериментальных данных для коррекции априорных (доопытных) вероятностных представлений об исследуемом объекте.

 

2.10. ПОСЛЕДОВАТЕЛЬНОСТИ ИСПЫТАНИЙ.
ФОРМУЛА БЕРНУЛЛИ

Пусть производится ряд испытаний, в каждом из которых с определенной вероятностью р может произойти событие А. Если вероятность события А в каждом испытании не зависит от исходов предыдущих испытаний, то такие испытания называют независимыми относительно события А. Если при этом вероятность события А в каждом испытании одна и та же, то последовательность испытаний называют схемой Бернулли. Вероятность того, что в п испытаниях по схеме Бернулли событие А произойдет т раз в любой последовательности, вычисляется по формуле Бернулли:

где

Значение m = m0 появлений события А в п испытаниях, при котором вероятность принимает наибольшее значение, называется наивероятнейшим числом успехов и определяется из неравенств:

np – q £ m0£ np + p.

Разность граничных значений в этом двойном неравенстве равна 1. Если np + p не является целым числом, то наивероятнейшее число одно и равно m0 . Если np + p – целое число, то имеется два наивероятнейших числа m0 : np – q и np + p.

Пример 2.19. Вероятность попадания в цель при одном выстреле равна 0.6. Найти вероятность двух попаданий при трех выстрелах.

Решение. Имеем дело с тремя независимыми испытаниями, в каждом из которых с вероятностью p=0.6 может произойти событие А={попадание в цель}. Вероятность двух попаданий (в любой последовательности) при трех выстрелах находим по формуле Бернулли:

 

Пример 2.20. Испытывается 15 одинаковых изделий. Вероятность того, что изделие выдержит испытание, равна 0.9. Найти наивероятнейшее число изделий, выдержавших испытание.

Решение. По условию имеем: Подставим эти данные в неравенства для m0:

15× 0.9–0.1 £ m0< 15× 0.9+ 0.9 => 13.4 < m0 < 14.4.

Отсюда следует, что m0=14.

 


Поделиться:



Популярное:

  1. БИЛЕТ 10. ГЕРМЕНЕВТИКА И ПРОБЛЕМА ИНТЕРПРЕТАЦИИ ЛИТЕРАТУРНОГО ПРОИЗВЕДЕНИЯ. ИДЕИ И ТРУДЫ М. М. БАХТИНА.
  2. Введение: Внутренний мир художественного произведения
  3. Векторы в пространстве. Векторное и смешанное произведения векторов и их свойства.
  4. Вероятность исполнения пророчеств
  5. Вероятность осуществления хотя бы одного события
  6. Вероятность случайного исполнения пророчеств
  7. Вещи в мире произведения, их изображения и функции.
  8. Возможность, действительность и вероятность
  9. Вопрос 21. Сюжет и фабула литературно-художественного произведения. Неоднородность их литературоведческой интерпретации.
  10. Вопрос 23. Конфликт и его претворение в сюжете и иных элементах художественной организации произведения.
  11. Вопрос 24. Композиция литературно-художественного произведения.
  12. Вопрос 35. Основные представители и произведения реалистов 19 века.


Последнее изменение этой страницы: 2016-08-24; Просмотров: 1332; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.039 с.)
Главная | Случайная страница | Обратная связь