Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


КЛАССИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ВЕРОЯТНОСТИ



С.И. КОЛЕСНИКОВА

 

 

ВЫСШАЯ МАТЕМАТИКА III

ОСНОВЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ.
ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ
Методические указания и контрольные работы

 

 

СОДЕРЖАНИЕ

1 ПРЕДМЕТ ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ 4

2 СЛУЧАЙНЫЕ СОБЫТИЯ. . 7

2.1.ИСПЫТАНИЯ И СОБЫТИЯ.. 7

2.2.ВИДЫ СОБЫТИЙ.. 8

2.3.КЛАССИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ВЕРОЯТНОСТИ.. 9

2.4.ОСНОВНЫЕ ФОРМУЛЫ КОМБИНАТОРИКИ.. 10

2.5.ПРОИЗВЕДЕНИЕ И СУММА СОБЫТИЙ.. 13

2.6.... УСЛОВНАЯ ВЕРОЯТНОСТЬ. ВЕРОЯТНОСТЬ ПРОИЗВЕДЕНИЯ СОБЫТИЙ.. 13

2.7.ВЕРОЯТНОСТЬ СУММЫ СОБЫТИЙ.. 15

2.8.ФОРМУЛА ПОЛНОЙ ВЕРОЯТНОСТИ.. 18

2.9.ФОРМУЛА БАЙЕСА.. 20

2.10.ПОСЛЕДОВАТЕЛЬНОСТИ ИСПЫТАНИЙ БЕРНУЛЛИ.. 21

2.11.ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ В СХЕМЕ БЕРНУЛЛИ.. 22

3 СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. .. 25

3.1. ПОНЯТИЕ СЛУЧАЙНОЙ ВЕЛИЧИНЫ... 25

3.2. ЗАКОН РАСПРЕДЕЛЕНИЯ ДИСКРЕТНОЙ СЛУЧАЙНОЙ ВЕЛИЧИНЫ... 26

3.3. ФУНКЦИЯ РАСПРЕДЕЛЕНИЯ.. 27

3.4. ВЕРОЯТНОСТЬ ПОПАДАНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ НА ЗАДАННЫЙ ИНТЕРВАЛ 29

3.5. ПЛОТНОСТЬ РАСПРЕДЕЛЕНИЯ.. 30

3.6. ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНОЙ ВЕЛИЧИНЫ... 32

3.7. ПРИМЕРЫ ДИСКРЕТНЫХ РАСПРЕДЕЛЕНИЙ.. 36

3.8. ПРИМЕРЫ НЕПРЕРЫВНЫХ РАСПРЕДЕЛЕНИЙ.. 37

4 ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ. . 43

4.1. ВЫБОРОЧНЫЙ МЕТОД.. 43

4.1.1.ГЕНЕРАЛЬНАЯ СОВОКУПНОСТЬ И ВЫБОРОЧНАЯ.. 43

4.1.2.ВАРИАЦИОННЫЙ РЯД. ПОЛИГОН ЧАСТОТ И ГИСТОГРАММА ЭМПИРИЧЕСКАЯ ФУНКЦИЯ РАСПРЕДЕЛЕНИЯ.. 44

4.2. СТАТИСТИЧЕСКОЕ ОЦЕНИВАНИЕ.. 49

4.2.1.ОЦЕНКА ПАРАМЕТРОВ ГЕНЕРАЛЬНОЙ СОВОКУПНОСТИ. ТОЧЕЧНАЯ ОЦЕНКА И ЕЕ СВОЙСТВА.. 49

4.2.2.ОЦЕНКА С ПОМОЩЬЮ ИНТЕРВАЛОВ.. 53

4.3. ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ. 55

4.3.1ПРОВЕРКА ГИПОТЕЗ О ВИДЕ РАСПРЕДЕЛЕНИЯ. КРИТЕРИЙ СОГЛАСИЯ ПИРСОНА 59

5 КОНТРОЛЬНАЯ РАБОТА 3.1. 63

6 КОНТРОЛЬНАЯ РАБОТА 3.2. 88

6.1.ПРИМЕР ВЫПОЛНЕНИЯ КОНТРОЛЬНОЙ РАБОТЫ 3.2. 95

ПРИЛОЖЕНИЕ 1. 102

ПРИЛОЖЕНИЕ 2. 104

Приложение 3. 105

Приложение 4. 106


ОБЩИЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Основные цели настоящих методических указаний:

- освоение наиболее употребительных понятий и определений теории вероятностей и математической статистики;

- приобретение практических навыков в решении вероятностных и статистических задач.

Программа курса рассчитана на один семестр, в котором необходимо выполнить контрольную работу (состоящую из 3-х частей).

Теоретический материал приведен только тот и в том объеме, который необходим для решения предлагаемых задач. Задачи контрольных заданий являются весьма простыми, они предназначены для усвоения основных начальных понятий и основ теории вероятностей и математической статистики.

Каждая тема иллюстрирована большим количеством примеров, контрольная работа снабжена образцами выполнения заданий.

Предполагается, что студенты знают математику в объеме средней школы: понятие множества, основные операции с ними; функция –определение, свойства элементарных функций; на понятийном уровне – предел, производная, неопределенный и определенный интеграл.

При выполнении контрольной работы студент должен придерживаться следующих требований:

- перед началом решения задачи необходимо написать полный текст условия задачи;

- решение задачи следует снабжать подробными пояснениями, расчёты по формулам должны быть приведены полностью, без сокращений;

- в задачах по математической статистике для получения правильного результата необходимо проводить промежуточные вычисления с достаточно высокой точностью (до 3 – 5 значащих цифр после запятой);

- табличные исходные данные в задачах по математической статистике можно найти в любом учебнике по теории вероятностей и математической статистики или в Интернет;

- в конце приведенного решения задачи необходимо указывать литературу, используемую при её решении;

Перед решением заданий контрольной работы рекомендуется ознакомиться со всеми примерами, рассмотренными в данной работе. По каждому заданию контрольной работы в методических указаниях приводится основной теоретический материал и разбирается несколько типовых примеров.

Вероятность есть степень достоверности и отличается от нее как часть от целого.

Якоб Бернулли (Jacob Bernoulli)

 

1 ПРЕДМЕТ ТЕОРИИ ВЕРОЯТНОСТЕЙ И
МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ

 

Теория вероятностей – это математическая дисциплина, изучающая закономерности массовых случайных явлений.

Теория вероятностей не может предсказать результат отдельного опыта со случайными исходами, но она достаточно надежно предсказывает результат большого числа таких опытов.

Основными объектами изучения в теории вероятностей являются случайные события и случайные величины.

Случайное событие – это качественное понятие. Событие либо происходит, либо не происходит. Случайная величина – понятие количественное: в результате опыта случайная величина принимает одно из множества своих возможных значений.

Не все случайные явления (эксперименты) можно изучать методами теории вероятностей, а лишь те, которые могут быть воспроизведены в одних и тех же условиях. Случайность и хаос - не одно и то же. Оказывается, что и в случайных экспериментах наблюдаются некоторые закономерности, например, свойство статистической устойчивости: доля экспериментов, в которых рассматриваемое событие произошло, имеет тенденцию стабилизироваться с ростом общего числа экспериментов, приближаясь к некоторому числу. Это число служит объективной характеристикой степени возможности событию произойти.

Математической статистикой называется раздел прикладной математики, изучающий методы сбора, обработки и анализа статистических данных для научных и практических целей. Математическая статистика занимается изучением закономерностей, которым подчиняются массовые явления, на основе результатов наблюдений.

Предметом исследования в математической статистике является совокупность объектов, однородных относительно некоторых признаков, например, мальчики 12 лет г.Томска; бегуны – мастера спорта России.

Приведем примеры применения теории вероятностей и математической статистики [1].

Пример 1.1. Из разговора заводских менеджеров: «мастерская дает двадцать три процента брака». Одна единица продукции не может быть дефектна на 23%. Она может быть либо годной, либо дефектной. Видимо, имеется в виду, что в партии большого объема содержится примерно 23% дефектных единиц продукции. Тогда возникает вопрос, а что значит «примерно»? Если из 100 проверенных единиц продукции 30 окажутся дефектными, или из 1000 – 300, или из 100000 – 30000 и т.д., то как оценить это «примерно»?

Пример 1.2. Контроль качества любой продукции. Чтобы решить, соответствует или не соответствует контролируемая партия продукции установленным требованиям, из нее отбирается выборка. По результатам контроля выборки делается заключение о всей партии. В этом случае очень важно избежать субъективизма при формировании выборки, т.е. необходимо, чтобы каждая единица продукции в контролируемой партии имела одинаковую вероятность быть отобранной в выборку. В производственных условиях отбор единиц продукции в выборку обычно осуществляют не с помощью жребия, а по специальным таблицам случайных чисел или с помощью компьютерных датчиков случайных чисел.

Похожие проблемы обеспечения объективности сравнения возникают при сопоставлении различных схем организации производства, оплаты труда, при проведении тендеров и конкурсов, подбора кандидатов на вакантные должности и т.п. Всюду нужна жеребьевка или подобные ей процедуры.

Пример 1.3. При любом измерении единиц продукции (с помощью штангенциркуля, микрометра, амперметра и т.п.) имеются погрешности. Чтобы выяснить, есть ли систематические погрешности, необходимо сделать многократные измерения единицы продукции, характеристики которой известны (например, стандартного образца). При этом следует помнить, что кроме систематической погрешности присутствует и случайная погрешность.

Поэтому встает вопрос, как по результатам измерений узнать, есть ли систематическая погрешность. Если отмечать только, является ли полученная при очередном измерении погрешность положительной или отрицательной, то, сопоставив измерение с бросанием монеты (положительную погрешность – с выпадением герба, отрицательную – решетки (нулевая погрешность при достаточном числе делений шкалы практически никогда не встречается)), сведем задачу проверки отсутствия систематической погрешности к проверке симметричности монеты.

Пример 1.4. При статистическом регулировании технологических процессов на основе методов математической статистики разрабатываются правила и планы статистического контроля процессов, направленные на своевременное обнаружение разладки технологических процессов и принятия мер к их наладке и предотвращению выпуска продукции, не соответствующей установленным требованиям. Эти меры нацелены на сокращение издержек производства и потерь от поставки некачественных единиц продукции. При статистическом приемочном контроле на основе методов математической статистики разрабатываются планы контроля качества путем анализа выборок из партий продукции. Сложность заключается в том, чтобы уметь правильно строить вероятностно-статистические модели принятия решений. В математической статистике для этого разработаны вероятностные модели и методы проверки гипотез, в частности, гипотез о том, что доля дефектных единиц продукции равна определенному числу р0, например, р0 = 0.23 (см. пример 1.1).

СЛУЧАЙНЫЕ СОБЫТИЯ

ИСПЫТАНИЯ И СОБЫТИЯ

Случайным событием (или просто событием) называется любой факт, который может иметь место при наличии определенной совокупности условий.

Каждое осуществление требуемой совокупности условий называется испытанием или опытом.

События, которые могут произойти в результате испытания, называются исходами данного испытания. События принято обозначать заглавными (прописными) буквами начала латинского алфавита: А, В, С и т.д. Словесное описание события часто дается в такой форме:

А = {выпадение " орла" при бросании монеты}.

 

ВИДЫ СОБЫТИЙ

 

В теории вероятностей различают виды событий.

Достоверное событие. Так называют событие, которое обязательно происходит в результате испытания.

Невозможное событие – событие, которое не может произойти в данном испытании.

Совместные и несовместные события. Два события называются несовместными, если они не могут произойти вместе в одном испытании, в противном случае их называют совместными. События А1, А2, ..., Аn , называют попарно несовместными, если никакие два из них не могут произойти вместе в одном испытании.

Противоположным событию А называется событие `А, состоящее в непоявлении события А. Очевидно, что события А иявляются несовместными.

Говорят, что события А1, А2,..., Аn в некотором испытании образуют полную группу, если в результате испытания обязательно должно произойти хотя бы одно из них.

Условимся полную группу несовместных исходов называть пространством элементарных событий.

 

Пример 2.1. Достоверным является событие А = {извлечение белого шара из урны, где все шары белые}.

Невозможным является событие B = {извлечение белого шара из урны, где все шары черные}.

Практически невозможное событие: C1={найти иголку в стоге сена}; C2=={вытащить белый шар из урны, где 1000 шаров черные, а 1 – белый}

Практически достоверное событие: D={вытащить белый шар из урны, где 999 шаров белые, а 1 – черный};

Пример 2.2. Испытание состоит в бросании игральной кости. Рассматриваем события:

А = {выпадение двух очков};

В = {выпадение трех очков};

С = {выпадение четного числа очков}.

События А и В, а также В и С являются несовместными. События А и С – совместные. Попарно несовместными события А, В, С не являются.

Пример 2.3. Производится бросание игральной кости.

А = {выпадение шести очков};

= {выпадение любого числа очков, кроме шести}.

Говорят, что события А1, А2,..., Аn в некотором испытании образуют полную группу, если в результате испытания обязательно должно произойти хотя бы одно из них.

Пример 2.4. Производится бросание монеты. Полную группу образуют события А = {выпадение " орла" }, В = {выпадение " решки" }.

 

ВЕРОЯТНОСТЬ СУММЫ СОБЫТИЙ

Теорема 2.1. Вероятность суммы двух несовместных событий равна сумме вероятностей этих событий:

Теорема 2.2. Для любого события А вероятность противоположного события А выражается равенством

Р(`А) = 1 – Р(А)

Теорема 2.3 . Вероятность суммы двух совместных событий равна сумме вероятностей этих событий минус вероятность их совместного появления:

Р(А + В) = Р(А)+ Р(В) – Р(АВ).

Теорема сложения обобщается на любое конечное число событий следующим образом:

(2.3)

Если события А1, А2, ..., Аппопарно несовместные, то формула (2.3) принимает вид:

Замечание. При решении задач с использованием формулы (2.3) приходится производить громоздкие вычисления, поэтому часто выгоднее перейти к противоположным событиям, т.е. вместо вероятности суммы событий А12+...+Ап находить вероятность произведения противоположного события . Очевидно, что эти два события противоположны, поэтому

(2.4)

Пример 2.13. В условиях примера 2 предыдущего пункта найти вероятность появления хотя бы одной пробоины.

Решение. Данное событие есть сумма событий А и В, причем эти события совместные, поэтому вероятность интересующего нас события равна Р(А + В) = Р(А) + Р(В) – Р(АВ). Ранее было найдено, что Р(АВ)=0.48, следовательно, Р(А + В) = 0.6 + 0.8 – 0.48 = 0.92.

Пример 2.14. Устройство содержит четыре независимо работающих элемента и сохраняет работоспособность, если работает хотя бы один из элементов. Вероятности безотказной работы элементов в течение определенного срока соответственно равны 0.9, 0.8, 0.7 и 0.6. Найти вероятность безотказной работы устройства.

Решение. Пусть события А1 А2, А3и А4означают безотказную работу соответственно первого, второго, третьего и четвертого элементов. Событие А={безотказная работа устройства} есть сумма событий: А=А1234.События А1 А2, А3и А4совместные, поэтому вероятность Р(А)надо вычислять по формуле (2.3). Чтобы упростить вычисления, воспользуемся формулой (2.4):

.

Так как события А1 А2, А3и А4независимые, то противоположные события также независимы, поэтому

= (1 – 0.9)(1 – 0.8)(1 – 0.7)(1 – 0.6) = 0.0024; и

Р(А) = 1 – 0.0024 = 0.9976.

Пример 2.15. Производится три независимых выстрела по мишени. Вероятности попадания в мишень при первом, втором и третьем выстрелах соответственно равны 0.2, 0.5, 0.4. Найти вероятность того, что будет ровно два попадания в мишень.

Решение. Событие А={ровно два попадания в мишень} выражается через события А1={попадание при первом выстреле}, А2={попадание при втором выстреле), А3={попадание при третьем выстреле} следующим образом:

Отсюда, учитывая несовместность суммируемых произведений событий и независимость событий А1, А2, А3, находим

Пример 2.16. В двух урнах находятся шары, отличающиеся только цветом: в первой урне 5 белых шаров, 11 черных и 8 красных, во второй 10 белых, 8 черных и 6 красных. Из обеих урн наудачу извлекают по одному шару. Найти вероятность того, что оба шара одного цвета.

Решение. Введем в рассмотрение следующие события:

В1={извлечение белого шара из первой урны},

В2={извлечение белого шара из второй урны},

С1={извлечение черного шара из первой урны},

С2={извлечение черного шара из второй урны},

D1={извлечение красного шара из первой урны},

D2={извлечение красного шара из второй урны}.

Выразим событие А= {извлечение шаров одного цвета} через эти события:

А= В1 В2+ С1 С2+ D1 D2

Следовательно,

Р(А) = Р(В1)Р(В2) + Р(С1)Р(С2) + Р(D1)P(D2).

Вероятности событий В, С, D найдем из классического определения: Р(В1)=5/24, Р(В2)=10/24, Р(С1)=11/24, Р(С2)=8/24, Р(D1)=8/24, P(D2)=6/24.

Таким образом, получаем

 

ФОРМУЛА ПОЛНОЙ ВЕРОЯТНОСТИ

 

Пусть А – некоторое событие, которое может появиться совместно с одним из ряда попарно несовместных событий Н1, Н2, …, Нn образующих полную группу ( ). Будем называть события Н гипотезами.

Теорема 2.4 . Вероятность события А, которое может произойти вместе с одной из гипотез Н1, Н2, …, Нn, равна сумме парных произведений вероятностей этих гипотез на соответствующие им условные вероятности события А:

Эта формула называется формулой полной вероятности.

Пример 2.17. Первый станок производит 25%, второй – 35%, третий – 40% всех изделий. Брак в их продукции составляет соответственно 5%, 4% и 2%. Найти вероятность того, что взятое наугад изделие окажется бракованным.

Решение. Введем гипотезы:

Н1={взятое изделие изготовлено на первом станке},

Н2={взятое изделие изготовлено на втором станке},

Н3={взятое изделие изготовлено на третьем станке}.

События Н1, Н2и Н3 несовместные, образуют полную группу, и событие А ={взятое изделие – брак} происходит вместе с одним из них, следовательно, они действительно могут быть взяты в качестве гипотез для события А. Согласно формуле полной вероятности

По условию задачи

Р(Н1)= 0.25, Р(Н2)=0.35, Р(Н3)=0.40, =0.05,

=0.04, =0.02,

следовательно, Р(А)= 0.25 • 0.05 + 0.35 • 0.04 + 0.40 • 0.02 = 0.0345.

Замечание. Вероятности характеризуют возможность осуществления некоторых условий , а возможность появления А при этих условиях.

 

ФОРМУЛА БАЙЕСА

Пусть событие А может произойти совместно с одной из гипотез Н1, Н2, …, Нn. Если до проведения опыта были известны вероятности гипотез , а в результате опыта произошло событие А, то условные вероятности гипотез вычисляются по формуле Байеса:

 

Пример 2.18. Первый станок производит 20%, а второй 80% всех деталей. Брак в их производстве составляет соответственно 4% и 2%. Взятая наугад деталь оказалась бракованной. Найти вероятность того, что эта деталь изготовлена на первом станке.

Решение. Введем две гипотезы для события А={взятая деталь оказалась бракованной}:

Н1={взятая деталь изготовлена на первом станке},

Н2={взятая деталь изготовлена на втором станке}.

Из условия задачи известно: Р(Н1)= 0.2, Р(Н2)=0.8, =0.04, =0.02.. По формуле Байеса находим

Замечание. Формула Байеса указывает путь использования новых экспериментальных данных для коррекции априорных (доопытных) вероятностных представлений об исследуемом объекте.

 

2.10. ПОСЛЕДОВАТЕЛЬНОСТИ ИСПЫТАНИЙ.
ФОРМУЛА БЕРНУЛЛИ

Пусть производится ряд испытаний, в каждом из которых с определенной вероятностью р может произойти событие А. Если вероятность события А в каждом испытании не зависит от исходов предыдущих испытаний, то такие испытания называют независимыми относительно события А. Если при этом вероятность события А в каждом испытании одна и та же, то последовательность испытаний называют схемой Бернулли. Вероятность того, что в п испытаниях по схеме Бернулли событие А произойдет т раз в любой последовательности, вычисляется по формуле Бернулли:

где

Значение m = m0 появлений события А в п испытаниях, при котором вероятность принимает наибольшее значение, называется наивероятнейшим числом успехов и определяется из неравенств:

np – q £ m0£ np + p.

Разность граничных значений в этом двойном неравенстве равна 1. Если np + p не является целым числом, то наивероятнейшее число одно и равно m0 . Если np + p – целое число, то имеется два наивероятнейших числа m0 : np – q и np + p.

Пример 2.19. Вероятность попадания в цель при одном выстреле равна 0.6. Найти вероятность двух попаданий при трех выстрелах.

Решение. Имеем дело с тремя независимыми испытаниями, в каждом из которых с вероятностью p=0.6 может произойти событие А={попадание в цель}. Вероятность двух попаданий (в любой последовательности) при трех выстрелах находим по формуле Бернулли:

 

Пример 2.20. Испытывается 15 одинаковых изделий. Вероятность того, что изделие выдержит испытание, равна 0.9. Найти наивероятнейшее число изделий, выдержавших испытание.

Решение. По условию имеем: Подставим эти данные в неравенства для m0:

15× 0.9–0.1 £ m0< 15× 0.9+ 0.9 => 13.4 < m0 < 14.4.

Отсюда следует, что m0=14.

 

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

ПОНЯТИЕ СЛУЧАЙНОЙ ВЕЛИЧИНЫ

Случайной величиной называется величина, которая в результате испытаний, проводимых в одних и тех же условиях, принимает различные, вообще говоря, значения, зависящие от не учитываемых случайных факторов. Примеры случайных величин: число выпавших очков на игральной кости, число дефектных изделий в партии, отклонение точки падения снаряда от цели, время безотказной работы устройства и т.п. Различают дискретные и непрерывные случайные величины. Дискретной называется случайная величина, возможные значения которой образуют счетное множество, конечное или бесконечное (т.е. такое множество, элементы которого могут быть занумерованы).

Непрерывной называется случайная величина, возможные значения которой непрерывным образом заполняют некоторый конечный или бесконечный интервал числовой оси. Число значений непрерывной случайной величины всегда бесконечно.

Случайные величины будем обозначать заглавными буквами конца латинского алфавита: X, Y, ...; значения случайной величины – строчными буквами: х, у, .... Таким образом, X обозначает всю совокупность возможных значений случайной величины, а х – некоторое ее конкретное значение.

ФУНКЦИЯ РАСПРЕДЕЛЕНИЯ

 

Функция распределения является универсальной формой задания закона распределения как дискретных, так и непрерывных случайных величин.

Функцией распределения случайной величины X называется функция F(x), определенная на всей числовой оси следующим образом:

F(x)= Р(Х < х),

т.е. F(x) есть вероятность того, что случайная величина X примет значение меньшее, чем x.

Функцию распределения можно представить графически. Для дискретной случайной величины график имеет ступенчатый вид. Построим, например, график функции распределения случайной величины, заданной следующим рядом (Рисунок 3.1):

 

X
p 0.3 0.5 0.2

 

Рисунок 3.1. График функции распределения дискретной случайной величины

Скачки функции происходят в точках, соответствующих возможным значениям случайной величины, и равны вероятностям этих значений. В точках разрыва функция F(x)непрерывна слева.

График функции распределения непрерывной случайной величины представляет собой непрерывную кривую (Рисунок 3.2).

x

 

Рисунок 3.2. Функция распределения непрерывной случайной величины

 

Функция распределения обладает следующими очевидными свойствами:

1) , 2) , 3) , 4) при .

ПЛОТНОСТЬ РАСПРЕДЕЛЕНИЯ

 

Для непрерывных случайных величин наряду с функцией распределения используется еще одна форма задания закона распределения – плотность распределения.

Если – вероятность попадания на интервал , то отношение характеризует плотность, с которой вероятность распределена в окрестности точки x. Предел этого отношения при , т.е. производная , называется плотностью распределения (плотностью распределения вероятностей, плотностью вероятности) случайной величины X. Условимся плотность распределения обозначить

.

Таким образом, плотность распределения характеризует вероятность попадания случайной величины в окрестность точки х.

График плотности распределения называют кривой распределения (Рисунок 3.4).

 

Рисунок 3.4. Вид плотности распределения

Исходя из определения и свойств функции распределения F(x), нетрудно установить следующие свойства плотности распределения f(x):

1) f(x)³ 0

2)

3)

4)

Для непрерывной случайной величины в силу того, что вероятность попадания в точку равна нулю, имеют место следующие равенства:

Пример 3.2. Случайная величина X задана плотностью распределения

Требуется:

а) найти значение коэффициента а;

б) найти функцию распределения;

в) найти вероятность попадания случайной величины на интервал (0, ).

Решение, а) Воспользуемся свойством 3:

Отсюда получаем: а=1/2.

б) Если , то

если то

если , то

Таким образом,

в) По свойству 4:

 

ПРИМЕРЫ ДИСКРЕТНЫХ РАСПРЕДЕЛЕНИЙ

 

1. Биномиальное распределение. Случайная величина , равная числу «УСПЕХОВ» в схеме Бернулли, имеет биномиальное распределение: , .

Математическое ожидание случайной величины, распределённой по биноминальному закону, равно

.

Дисперсия этого распределения равна .

2. Распределение Пуассона ,

Математическое ожидание и дисперсия случайной величины с распределением Пуассона , .

Распределение Пуассона часто используется, когда мы имеем дело с числом событий, появляющихся в промежутке времени или пространства, например: число машин, прибывших на автомойку в течении часа, число остановок станков в неделю, число дорожных происшествий и т.д.

3. Геометрическое распределение

Случайная величина имеет геометрическое распределение с параметром , если принимает значения с вероятностями . Случайная величина с таким распределением имеет смысл номера первого успешного испытания в схеме Бернулли с вероятностью успеха . Таблица распределения имеет вид:

 
 


ПРИМЕРЫ НЕПРЕРЫВНЫХ РАСПРЕДЕЛЕНИЙ

1. Равномерное распределение. Плотность равномерного или прямоугольного распределения:

,

т.е. вероятности всех возможных значений случайной величины одинаковы и равны .

Математическое ожидание случайной величины с равномерным распределением равно

,

 

дисперсия .

Функция распределения имеет вид , (Рисунок 3.5).

Рисунок 3.5. Графики плотности и функции равномерного распределения

 

2. Показательное (экспоненциальное) распределение - закон, функция плотности распределения которого имеет вид: , где параметр распределения есть действительное число (постоянный параметр) (Рисунок 3.6).

Функция распределения показательного закона имеет вид:

Математическое ожидание и дисперсия случайной величины, распределенной по показательному закону, равны соответственно , .

Рисунок 3.6. Графики плотности и функции показательного распределения

 

3. Нормальное распределение. Нормальный закон распределения вероятностей занимает особое место среди других законов распределения. В теории вероятности доказывается, что плотность вероятности суммы независимых или слабо зависимых, равномерно малых (т.е. играющих примерно одинаковую роль) слагаемых при неограниченном увеличении их числа как угодно близко приближается к нормальному закону распределению независимо от того, какие законы распределения имеют эти слагаемые (центральная предельная теорема А. М. Ляпунова).

Плотность вероятности нормально распределенной случайной величины имеет вид: , где и – вещественные параметры распределения, имеющие конечные значения, при этом часто используют обозначение .

Функция распределения записывается в виде

,

Здесь – табулированный интеграл вероятности (значения интеграла можно найти во всех учебниках и задачниках по теории вероятностей). Функция и плотность нормального распределения изображены на Рисунок 3.7.

 

 

Рисунок 3.7. Графики плотности и функции нормального распределения

 

Математическое ожидание нормально распределенной случайной величины равно , дисперсия . Таким образом, параметры и имеют смысл математического ожидания и среднеквадратического значения (отклонения) случайной величины.

Распределение, описываемое функцией , называется нормальным или распределением Гаусса.

На Рисунок 3.8 изображены кривые нормального распределения случайных погрешностей для различных значений среднеквадратического отклонения .

Рисунок 3.8. Кривые плотности нормального распределения, .

 

Из Рисунок 3.8 видно, что по мере увеличения среднеквадратического отклонения распределение все более и более расплывается, вероятность появления больших значений погрешностей возрастает, а вероятность меньших погрешностей сокращается, т.е. увеличивается рассеивание результатов наблюдений.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-08-24; Просмотров: 1062; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.173 с.)
Главная | Случайная страница | Обратная связь