Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Электроды для съема биоэлектрического сигнала



Электроды - это проводники специальной формы с помощью которых часть электрической цепи, составляемая из проводов, соединяется с другой частью этой цепи неметаллического типа проводимости (например, с той или иной частью тела, органом, поверхностью кожи и т.д.).

Электроды чаще всего используются для съема электрического сигнала реально существующего в исследуемом организме. Они просто выполняют роль контакта в электрической цепи, осуществляя отведение электрического сигнала с той или иной степенью потерь, зависящей от качества контакта между электродом и той частью организма, с которой он соприкасается (ЭКГ, ЭЭГ, ЭМГ, ЭОГ, ЭГГ).

В некоторых случаях электроды могут использоваться не для съема электрических потенциалов, реально имеющихся в живом организме, а для подведения к организму некоторого внешнего электрического воздействия (например, реография).

К электродам, как элементам съема медико-биологической информации, обычно предъявляются специфические требования: они должны быстро фиксироваться и сниматься, обладать низкой стоимостью, высокой стабильностью электрических параметров, эластичностью при достаточной механической прочности, не давать артефактов и помех, не оказывать раздражающего действия.

Биоэлектрические сигналы, характеризующие функциональную активность различных систем и органов человека, являются существенно слаботочными и занимают область низких и инфранизких частот (таблица).

 

  Параметры   Наименование метода
ЭКГ ЭЭГ ЭМГ ЭОГ ЭГГ  
Амплитуда, мВ   0, 1-5, 0 0, 01-0, 5 0, 01-50 0, 05-0, 2 0, 1-1
Полоса частот, Гц   0, 5-400 1-1000 1-10000 0, 5-15 0, 01-10

 

В связи с этим обстоятельством важнейшим общим требованием, предъявляемым к разным электродам, является требование минимума потерь полезного сигнала, особенно на переходном сопротивлении электрод - конса, которое нужно стремиться сделать наименьшим. Величина переходного сопротивления зависит от типа металла, из которого изготовлен электрод, свойств кожи, площади ее соприкосновения с электродом и от проводящей среды между ними.

Переходное сопротивление между чистой, сухой кожей и электродом измеряется сотнями килоом. Для его уменьшения между кожей и электродом обычно прокладывается марлевая салфетка, смоченная физиологическим раствором. При этом переходное сопротивление снижается до десятков килоом. В последнее время чаще применяют специальные проводящие электродные пасты, которые дают лучший результат, чем простые электролиты.

Известно, что при погружении металлического электрода в электролит между металлом и раствором возникает некоторая разность потенциалов (электродный потенциал). При прохождении тока в цепи этот потенциал изменяется вследствие гальванической поляризации электрода. Потенциал поляризации зависит от многих причин (природы электрода, состава электролита, температуры и т.д.) и обычно меняется во времени в достаточно широких пределах. По своей величине он может достигать значений, превышающих величину полезного биоэлектрического потенциала. Все это в конечном итоге может привести к тому, что эффект поляризации электрода существенно исказит форму регистрируемого сигнала, а в ряде случаев сделает его регистрацию невозможной. Поэтому поляризация электрода является крайне нежелательным явлением. Она может быть уменьшена подбором материала электродов и состава электродных паст.

Существует множество типов металлических электродов. В качестве материала для изготовления электродов применяются золото, платина, серебро, палладий, нержавеющая сталь, сплавы иридием и другие металлы, сплавы и химические соединения.

Конструкция и характеристики электродов зависят во многом от целей их применения. По назначению электроды можно разделить на четыре группы:

1) для одноразового использования (в кабинетах функциональной диагностики и т.п.);

2) для длительного непрерывного наблюдения биоэлектрических сигналов (в условиях палат реанимации, интенсивной терапии);

3) для диагностического наблюдения (в условиях физических нагрузок в палатах реабилитации, в спортивной медицине);

4) для экстренного применения (в условиях неотложной терапии, скорой помощи).

 

Датчики медико-биологической информации.

Назначение и классификация датчиков.

Характеристики датчиков. Погрешность датчиков.

Примеры устройства датчиков, используемых в медицине.

Датчик - (преобразователь медицинской информации) - устройство съема информации, реагирующий своим чувствительным элементом на воздействие измеряемой величины, а также осуществляющий преобразование этого воздействия в форму, удобную для последующего усиления, регистрации, обработки и т.д.

Тип и конструкция датчика зависят от вида необходимого преобразования, то есть определяются конкретными физическими представлениями входного неэлектрического сигнала и выходного электрического сигнала, а также зависят от условий работы датчика.

Входными неэлектрическими величинами датчиков могут быть механические величины (линейные и угловые перемещения, скорость, ускорение, давление, частота колебаний), физические (температура, освещенность, влажность), химические (концентрация, вещества, состав), непосредственно физиологические (наполнение ткани кровью).

Выходными электрическими величинами обычно служат ток, напряжение, ионное сопротивление (импеданс), частота (или фаза) переменного тока или импульсных сигналов.

Датчики медико-биологической информации можно разделить на

две группы: биоуправляемые и энергетические.

Биоуправляемые датчики изменяют свои характеристики непосредственно под влиянием медико-биологической информации, поступающей от объекта измерения. В свою очередь биоуправляемые датчики подразделяются на активные (генераторные) и пассивные (параметрические).

В активных датчиках измеряемый параметр непосредственно преобразуется в электрический сигнал, то есть под воздействием измеряемой величины активные датчики сами генерируют сигнал соответствующей амплитуды или частоты. К таким датчикам относятся пьезоэлектрические, индукционные преобразователи, термоэлементы.

Пассивные датчики под воздействием входной величины изменяют свои электрические параметры: сопротивление, емкость или индуктивность. В отличие от активных (генераторных) датчиков, пассивные (параметрические) датчики для получения соответствующего значения выходного напряжения или тока включаются в электрическуюцепь с внешним источником питания. К таким датчикам можно отнести емкостные, индуктивные, резистивные, контактные датчики.

Энергетические датчики в отличие от биоуправляемых активно воздействуют на органы и ткани. Они создают в исследуемом органе так называемый немодулированный энергетический поток со строго определенными, постоянными во времени характеристиками. Измеряемый параметр воздействует на характеристики этого потока, модулирует его пропорционально изменениям самого параметра. Энергетические информационные преобразователи нуждаются в источнике дополнительной энергии для воздействия на объект и создания немодулированного энергетического потока. Из датчиков такого типа можно указать, к примеру, фотоэлектрические и ультразвуковые.

Каждый датчик характеризуется определенными метрологическими показателями. Важнейшими из них являются:

1) чувствительность - минимальное изменение снимаемого параметра, которое можно устойчиво обнаружить с помощью данного преобразователя;

2) динамический диапазон - диапазон входных величин, измерение которых производится без заметных искажений от максимальной предельной величины до минимальной, ограниченной порогом чувствительности или уровнем помех;

3 ) погрешность - максимальная разность между получаемой и номинальной выходными величинами;

4) время реакции - минимальный промежуток времени, в течение которого происходит установка выходной величины на уровень, соответствующий измененному уровню входной величины.

Погрешности устройств съема медико-биологической информации - одно из звеньев в общей цепи ошибок измерений, зависящих от ряда технических и специфических причин. Это обстоятельство затрудняет сопоставление результатов в процессе диагностики и лечения.

Причинами погрешностей могут быть:

1) температурная зависимость функции преобразования;

2) гистерезис - запаздывание y от x даже при медленном изменении входной величины, происходящее в результате необратимых процессов в датчике;

3) непостоянство функции преобразования во времени;

4) обратное воздействие датчика на биологическую систему, приводящее к изменению показаний;

5) инерционность датчика (пренебрежение его временными характеристиками) и другие.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-08-31; Просмотров: 452; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.014 с.)
Главная | Случайная страница | Обратная связь