|
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Из правил округления имеется существенное исключение: при округлении погрешностей последняя сохраняемая цифра увеличивается на единицу, если старшая отбрасываемая цифра 3 или больше 3.
При округлении пользуются понятием о значащих цифрах. Все цифры числа, начиная с первой слева, отличной от нуля, до последней (может быть и нуль), называются значащими цифрами. К значащим цифрам относятся все верные и сомнительные цифры. К незначащим цифрам относятся: 1) нули в начале числа, определяющие разряды десятичных дробей в числах, меньших единицы; 2) нули в конце числа, заменившие цифры, отброшенные после округления; 3) неверные цифры, если они по каким-либо причинам не отброшены. Например, числа 0.002583 При сложении и вычитании округление всех чисел производится по правилам 1-3 до разряда на единицу меньшего, чем разряд наименее точного числа. В результате следует сохранять столько десятичных знаков, сколько их в приближенном данном с наименьшим числом десятичных знаков: 23.2 + 0.442 + 7.247 »23.2 + 0.44 + 7.25 = 30.89 » 30.9. При умножении и делении в результате следует сохранять столько значащих цифр, сколько их имеет приближенное данное с наименьшим числом значащих цифр: 30.9 56.9: 2.412 » 56.9: 2.41 = 23.609 » 23.6. При возведении в степень в результате следует сохранять столько значащих цифр, сколькоих имеет возводимое в степень приближенное число: (11.38)2 = 129.5044 » 129.5.
При нахождении логарифма приближенного числа нужно брать из таблиц столько знаков, сколько верных знаков содержит данное число: lg77.23 » 2.8878 » 2.888. Примечание. При вычислении промежуточных результатов следует брать на одну цифру больше, чем указано в округлении при выполнении математических действий над числами. В окончательном результате эта " запасная" цифра отбрасывается. Приведенный ниже пример поясняет сказанное:
Значение физической величины округляется до первой сомнительной цифры. Все цифры, стоящие после сомнительной, отбрасываются. Абсолютная ошибка округляется до одной значащей цифры, относительная ошибка - до двух значащих цифр. Пример. Путем измерений и математических расчетов было получено, что для объема некоторого тела имеют место следующие числа (см. с. 13: Вычисление абсолютной и относительной ошибок измерений): V = 43.235 м3; DV = ± 0.423 м3. Оказалось, что сомнительной цифрой при вычислении объема является 2. Тогда результат можно записать в следующем виде: V= (43.2 ± 0.4) м3; EV = Промахи, систематические и случайные погрешности измерений
При измерении физических величин под действием самых разнообразных причин возникают погрешности измерения. Все погрешности принято подразделять на систематические, случайные и промахи (ошибки). Промахи Это наиболее распространенная причина ошибок. Она возникает по вине экспериментатора, сделавшего неверный отсчет, неверно записавшего результат измерения, допустившего ошибку при вычислении. К промахам, например, относятся неточно установленный нуль секундомера или нониуса микрометра, неправильная установка самого прибора (вертикальная вместо горизонтальной или наоборот), неразборчивая или небрежная запись в черновиках, а следовательно, и неправильное переписывание данных при составлении отчета дома и т.п. Эта ошибка бывает значительно больше погрешностей других измерений. Если ошибка допущена в одном измерении из нескольких, сделанных верно, то, сравнивая числовые значения полученных результатов или их абсолютных погрешностей, ее легко обнаружить. Результат, полученный ошибочно, резко отличается от результатов других измерений, а абсолютная погрешность имеет значение, значительно превышающее абсолютные погрешности других измерений. Эта ошибка должна быть исключена из результатов измерений. Систематические погрешности
Эти ошибки очень трудно контролировать, поскольку они связаны с конструкцией либо состоянием самого измерительного прибора или инструмента (например: неправильно отградуированный штангенциркуль, не установленная на нуль стрелка прибора), а также с влиянием на них незаметных, на первый взгляд, факторов (температуры, влажности, электрических и магнитных полей, вибрации, освещенности и т.п.). В этом случае всегда измеряемая величина (линейные размеры, ток, напряжение, сопротивление и т.п.) будет заниженной или завышенной по сравнению с истинной. Таким образом, из сказанного выше ясно, что для избежания таких ошибок необходимо тщательно готовить измерительные приборы, оборудование, установки, обеспечивать правильное хранение, а также исключить внешние факторы, влияющие на результат измерения. Случайные погрешности Случайной называется погрешность, которая вызывается действием не поддающихся контролю многочисленных, независимых друг от друга факторов, изменяется от одного измерения к другому непредсказуемым образом и в равной степени может быть как положительной, так и отрицательной.
будет средним арифметическим из n указанных результатов. Эта величина будет наиболее близкой к истинному значению искомой величины. В общем случае при измерении любой величины могут присутствовать все три вида ошибок, но последний будет присутствовать всегда. Популярное:
|
Последнее изменение этой страницы: 2016-08-31; Просмотров: 668; Нарушение авторского права страницы