Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Выбор и обоснование модели для исследования технологического процесса упаривания послеспиртовой барды



 

Процесс, происходящий в данной схеме, является процессом обслуживания потока сырья (раствора послеспиртовой барды с хн = 9 – 11 % СВ ) и получения готового продукта (раствора послеспиртовой барды с хк = 34 – 36 % СВ). Полученное уравнение материального баланса устанавливает однозначное функциональное соответствие между входными переменными (начальной и конечной концентраций продукта) и выходной величиной (расход греющего пара). Эта зависимость была установлена на основании физических законов, представляющих процесс упаривания.

Таким образом, на основании полученных результатов можно предположить, что мы имеем дело с детерминированной математической моделью исследуемого процесса.

По характеру режима функционирования объекта модель будет являться статической, были приняты допущения о незначительном изменении некоторых величин во времени, поэтому будем считать их константами. Но некоторые величины (начальная (хн) и конечная (хк) концентрации) изменяются независимо от времени случайным образом в некотором заданном диапазоне (хн=9–11 %, хк=34–36 %).

На рисунке 2 представлена концептуальная модель процесса упаривания послеспиртовой барды.

 

Планирование эксперимента. Полный факторный эксперимент

 

Эксперимент проводится в целях отыскания условий протекания процессов, обеспечивающих оптимальное значении выбранного параметра (экстремальная задача), и построения интерполяционной формулы для предсказания значений изучаемого параметра, зависящего от ряда факторов (интерполяционная задача).

Полным факторным экспериментом (ПФЭ) называется эксперимент, в котором реализуются все возможные сочетания n-уровней независимых управляемых факторов, каждый из которых варьируется на двух уровнях. Число этих комбинаций N = 2n определяет тип ПФЭ. Уровни факторов представляют собой границы исследуемой области по данному технологическому параметру.

Сущность факторного эксперимента состоит в одновременном варьировании всех факторов по определенному плану и использовании результата эксперимента для определения коэффициентов b0, b1, b2, b12 уравнения регрессии

 

y=b0+b1xн+b2xк+…+bnxнxк

 

где Xi – факторы (начальная и конечная концентрации i=к, н).

Введем понятие нижнего XiН и верхнего XiВ уровня фактора хi. В данном случае XНН=9%, ХКН=34%, ХНВ=11, ХКВ=36%.

Затем выбирается интервал варьирования по каждой переменной – расстояние по данной оси от центра до экспериментальной точки.

Центр, или основной уровень плана

 

 

Интервал варьирования

 

 

Рассмотрим также понятие нулевого уровня фактора хi. Прибавление интервала варьирования Dхi к нулевому уровню дает верхний уровень, а вычитание - нижний. Обычно верхние и нижние уровни факторов обозначаются символами «+1» и «-1», что соответствует кодированию факторов по формуле

 

 

где xi0 – значение в центре плана (нулевой фактор);

xi – значение переменной величины;

Dx – значение интервала варьирования.

 

Для данного процесса ХН0=10%, ХК0=35%, DхН=1% и DхК=1%. Кодирование будет следующее ХНВ= +1; ХКВ= +1; ХНН= -1; ХКН=-1.

Кодирование факторов означает переход от системы координат в натуральных единицах к системе координат в кодированной форме. Каждая точка факторного пространства (+1; +1), (+1; -1), (-1; +1), (-1; -1) это опыт в исследованиях.

В общем случае эксперимент, в котором реализуются все возможные сочетания факторов, полным факторным экспериментом (ПФЭ). Если каждый из n факторов варьируется на двух уровнях, то получается ПФЭ типа 2n. Запись всех комбинаций факторов в кодированной форме образует матрицу планирования.

Таблица 1 является матрицей планирования для двух факторов на двух уровнях.

В матрице приведены результаты Jj1,..., Jjm в опытах и среднее значение по i-ой строке матрицы, х0 - столбец значений фиктивной переменной.

 

Таблица 1 – Матрица планирования

Опыт ФП План Переменная состояния
  Х0 XН ХК ХК ХН Yj  
+1 +1 +1 +1 Y1 0, 134
+1 +1 -1 -1 Y2 0, 130
+1 -1 +1 -1 Y3 0, 145
+1 -1 -1 +1 Y4 0, 142

 

.

 

где bJ – значение коэффициентов уравнения регрессии;

m – количество опытов;

Y – значение результатов в опытах;

х – значение переменной величины.

 

Для установления зависимости выходной величины (расход греющего пара) от входных величин (начальная и конечная концентрации послеспиртовой барды) необходимо составить уравнение регрессии для выходной величины y по двум факторам

 

y=b0+b1x1+b2x2+b12x1x2.

 

Для этого рассчитаем коэффициенты уравнения регрессии

 

b0=(0, 134+0, 130+0, 145+0, 142)/4=0, 138,

b1=(0, 134+0, 130-0, 145-0, 142)/4= -0, 00575,

b2=(0, 134-0, 130+0, 145-0, 142)/4=0, 00175,

b12=(0, 134-0, 130-0, 145+0, 142)/4=0, 00025.

 

Следовательно, искомое уравнение регрессии имеет вид

 

y=0, 138-0, 00575x1+0, 00175x2+0, 00025x1x2.

 

Конечная формула представляет собой уравнение регрессии для выходной переменной y. Она выражает зависимость выходной величины y (расход греющего пара) от 2-х факторов входной величины (начальной и конечной концентраций послеспиртовой барды).

 

Выводы

 

В данной главе схематически представлен технологический процесс, его описание, а также параметры, необходимые для исследования. Записаны уравнения материального и теплового балансов, которые описывают процессы в выпарном аппарате. Разработана математическая модель процесса упаривания послеспиртовой барды, чтобы найти количество греющего пара, поступающего в тепловую рубашку аппарата для поддержания требуемой температуры.

Выбрана и обоснована математическая модель. Разработана и описана концептуальная модель процесса упаривания послеспиртовой барды.

Проведено планирование эксперимента; полный факторный эксперимент, в результате получено уравнение регрессии.

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-09-01; Просмотров: 672; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.02 с.)
Главная | Случайная страница | Обратная связь