Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Определение коэффициента вязкости жидкости по методу Стокса



Выполнил студент _______________, группа ___________, дата _______.

Допуск ______________

Выполнение __________

Зачет ________________

 

Цель работы: Ознакомиться с основными законами движения вязкой жидкости и экспериментально определить коэффициент внутреннего трения жидкости.

Приборы и материалы

№ п\п Наименование прибора Цена деления Предел измерения (хmax) Точность отсчета (Δ хпр)
Цилиндр с вязкой жидкостью - - -
Дробинки - - -
Секундомер      
Линейка      
Штангенциркуль      

 

Теоретические сведения

/1. Основные понятия и законы

Явление внутреннего трения (вязкость)

Идеальная жидкость, т.е. жидкость, движущаяся без трения, является абстрактным понятием. Всем реальным жидкостям и газам в большей или меньшей степени присуща вязкость или внутреннее трение. Вязкость (внутреннее трение) наряду с диффузией и теплопроводностью относится к явлениям переноса и наблюдается только в движущихся жидкостях и газах. Вязкость проявляется в том, что возникающее в жидкости или газе движение после прекращения действия причин, его вызвавших, постепенно прекращается.

Вязкость (внутреннее трение) — одно из явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. В результате происходит рассеяние в виде тепла энергии, затрачиваемой на это перемещение.

Механизм внутреннего трения в жидкостях и газах заключается в том, что хаотически движущиеся молекулы переносят импульс из одного слоя в другой, что приводит к выравниванию скоростей — это описывается введением силы трения. Вязкость твёрдых тел обладает рядом специфических особенностей и рассматривается обычно отдельно.

Молекулярно-кинетическая теория объясняет вязкость движением и взаимодействием молекул.

В жидкостях, где расстояния между молекулами много меньше, чем в газах, вязкость обусловлена в первую очередь межмолекулярным взаимодействием, ограничивающим подвижность молекул. В жидкости молекула может проникнуть в соседний слой лишь при образовании в нём полости, достаточной для перескакивания туда молекулы. На образование полости (на «рыхление» жидкости) расходуется так называемая энергия активации вязкого течения. Энергия активации уменьшается с ростом температуры и понижением давления. В этом состоит одна из причин резкого снижения вязкости жидкостей с повышением температуры и роста её при высоких давлениях. При повышении давления до нескольких тыс. атмосфер вязкость увеличивается в десятки и сотни раз. Строгая теория вязкости жидкостей, в связи с недостаточной разработанностью теории жидкого состояния, ещё не создана.

Вязкость отдельных классов жидкостей и растворов зависит от температуры, давления и химического состава.

Вязкость жидкостей зависит от химической структуры их молекул. В рядах сходных химических соединений (насыщенные углеводороды, спирты, органические кислоты и т.д.) Вязкость изменяется закономерно — возрастает с возрастанием молекулярной массы. Высокая вязкость смазочных масел объясняется наличием в их молекулах циклов. Две жидкости различной вязкости, которые не реагируют друг с другом при смешивании, обладают в смеси средним значением вязкости. Если же при смешивании образуется химическое соединение, то вязкость смеси может быть в десятки раз больше, чем вязкость исходных жидкостей.

Возникновение в жидкостях (дисперсных системах или растворах полимеров) пространственных структур, образуемых сцеплением частиц или макромолекул, вызывает резкое повышение вязкости. При течении «структурированной» жидкости работа внешней силы затрачивается не только на преодоление вязкости, но и на разрушение структуры.

В газах расстояния между молекулами существенно больше радиуса действия молекулярных сил, поэтому Вязкость газов определяется главным образом молекулярным движением. Между движущимися относительно друг друга слоями газа происходит постоянный обмен молекулами, обусловленный их непрерывным хаотическим (тепловым) движением. Переход молекул из одного слоя в соседний, движущийся с иной скоростью, приводит к переносу от слоя к слою определённого импульса. В результате медленные слои ускоряются, а более быстрые замедляются. Работа внешней силы F, уравновешивающей вязкое сопротивление и поддерживающей установившееся течение, полностью переходит в теплоту. Вязкость газа не зависит от его плотности (давления), так как при сжатии газа общее количество молекул, переходящих из слоя в слой, увеличивается, но зато каждая молекула менее глубоко проникает в соседний слой и переносит меньший импульс (закон Максвелла).

Вязкость — важная физико-химическая характеристика веществ. Значение вязкости приходится учитывать при перекачивании жидкостей и газов по трубам (нефтепроводы, газопроводы). Вязкость расплавленных шлаков весьма существенна в доменном и мартеновском процессах. Вязкость расплавленного стекла определяет процесс его выработки. По вязкости во многих случаях судят о готовности или качестве продуктов или полупродуктов производства, поскольку вязкость тесно связана со структурой вещества и отражает те физико-химические изменения материала, которые происходят во время технологических процессов. Вязкость масел имеет большое значение для расчёта смазки машин и механизмов и т.д.

Прибор для измерения вязкости называется вискозиметром.

Влияние температуры на вязкость

Вязкость веществ существенно зависит от температуры. С ростом температуры вязкость газов увеличивается, а вязкость жидкостей уменьшается. Это объясняется тем, что кинетическая энергия каждой молекулы жидкости возрастает быстрее, чем потенциальная энергия взаимодействия между ними. Поэтому все смазки всегда стараются охладить, иначе это грозит простой утечкой через узлы.

Сила вязкого трения

Явление внутреннего трения с макроскопической точки зрения связано с возникновением сил трения между слоями газа или жидкости, перемещающимися параллельно друг другу с различными по величине скоростями. На движущийся слой действует ускоряющая сила. Наоборот, медленно перемещающийся слой тормозит более быстро движущиеся слой газа (жидкости). Силы трения, которые при этом возникают, направлены по касательной к поверхности соприкосновения слоев.

Причиной вязкости является наличие градиента1 скорости Δ U/Δ n между движущимися слоями жидкости (газа); при этом между слоями осуществляется перенос импульса.

Рассмотрим известный опыт Ньютона. Пусть имеются две параллельные пластинки (рис. 1), между которыми находится газ (жидкость).

 

Рис. 1

 

Расстояние между пластинками h. Нижнюю пластинку будем удерживать неподвижно, верхнюю заставим двигаться в одном и том же направлении в своей плоскости с постоянной скоростью u0.

Слой газа, непосредственно прилегающий к верхней пластинке, будет иметь ту же скорость u0, что и пластинка, слой же газа, прилегающий к нижней пластинке, находится в покое. Как показывает опыт, любой промежуточный слой движется со скоростью u, пропорциональной расстоянию x от неподвижной пластинки, т. е.

(1)

Постоянная a определяется из условия, что при x=h u=u0, т. е. u0 = ah. Откуда a = u0/h. Тогда выражение (1) примет вид:

(2)

Таким образом, к верхней пластинке приложена сила F1, лежащая в ее плоскости и имеющая то же направление, что и направление движения пластинки. Так как пластинка движется с постоянной скоростью u0, то на пластинку должна действовать такая же по величине, но противоположно направленная сила F со стороны газа, которую назовем силой вязкого трения.

Из опыта следует, что абсолютная величина силы F1 пропорциональна скорости u0, с которой мы двигаем пластинку, и площади пластины, т. е.

где η – постоянный коэффициент пропорциональности, который называют коэффициентом вязкого трения. Учитывая, что сила вязкого трения F = – F1, равенство (3) перепишем в виде:

(4)

Так как из (2) следует, что , то последнее выражение можно представить так:

(5)

Это закон внутреннего вязкого трения Ньютона, который установил его экспериментально. Закон утверждает: при стационарном (ламинарном) движении слоев жидкости или газа с различными скоростями между ними возникают касательные силы, пропорциональные градиенту скорости слоев и площади их соприкосновения.

Физический смысл коэффициента вязкости h заключается в том, что он численно равен силе, действующей на единицу площади поверхности, параллельной скорости течения газа или жидкости, при градиенте скорости .

Согласно второму закону Ньютона, F = dp / dt, где p – импульс элементарной массы слоя газа. Поэтому (5) можно представить в виде бесконечно малых:

(6)

Пусть изменение скорости движения газа или жидкости происходит в направлении оси X, а сама скорость течения направлена перпендикулярно этой оси (рис. 2).

 

Рис. 2

Тогда закон Ньютона (6) утверждает: импульс, переносимый за время dt через площадку dS, перпендикулярной оси X, пропорционален времени dt, величине площадки dS и градиенту скорости .

Внутреннее трение жидкостей, как и газов, возникает при движении жидкости вследствие переноса импульса в направлении, перпендикулярном к направлению движения. Общий закон внутреннего трения — закон Ньютона:

,

где: S – площадь соприкосновения движущихся слоев жидкости, м2;

знак « – » указывает, что сила F направлена против скорости u.

Характеристиками вязкости являются: динамический коэффициент вязкости η и кинематический коэффициент вязкости ν .

h динамическая вязкость, или коэффициент внутреннего трения жидкости (Па•с)), равный силе, действующей на единицу поверхности слоя при градиенте скорости, равном единице, т.е. когда скорость слоя, отстоящего на единицу длины от данного, отличается от скорости последнего на единицу скорости. Он количественно характеризует сопротивление жидкости (газа) смещению её слоёв. Величина, обратная, φ = 1/η называется текучестью.

Переход вещества из жидкого состояния в стеклообразное обычно связывают с достижением вязкости порядка 1011 − 1012 Па·с.

В технике, в частности, при расчёте гидроприводов и в триботехнике2, часто приходится иметь дело с величиной:

м2 c.

Эта величина получила название кинематической вязкости.

Здесь — плотность жидкости; — динамическая вязкость.

Качественное отличие сил вязкого трения от сухого трения заключается в том, что тело при наличии только вязкого трения и сколь угодно малой внешней силы обязательно придет в движение (т. е. для вязкого трения не существует трения покоя). Наоборот, под действием только вязкого трения тело, вначале двигавшееся, никогда полностью не остановится, хотя движение и будет бесконечно замедляться.

Вязкость газов

В кинетической теории газов коэффициент внутреннего трения вычисляется по формуле

,

где < u > – средняя скорость теплового движения молекул, < l> − средняя длина свободного пробега. Из этого выражения в частности следует, что вязкость не очень разреженных газов практически не зависит от давления, поскольку плотность ρ прямо пропорциональна давлению, а < l> – обратно пропорциональна. Такой же вывод следует и для других кинетических коэффициентов для газов, например, для коэффициента теплопроводности. Однако этот вывод справедлив только до тех пор, пока разрежение газа не становится столь малым, что отношение длины свободного пробега к линейным размерам сосуда (число Кнудсена) не становится по порядку величины равным единице; в частности, это имеет место в сосудах Дьюара (термосах).

С повышением температуры вязкость большинства газов увеличивается, это объясняется увеличением средней скорости молекул газа , растущей с температурой как .

Расплавленные металлы имеют вязкость η того же порядка, что и обычные жидкости. Особыми вязкостными свойствами обладает жидкий гелий. При температуре 2, 172 К он переходит в сверхтекучее состояние, в котором вязкость η = 0. (см. Гелий. Сверхтекучесть).

 

Теория лабораторной работы

Теоретические сведения

Если в вязкой жидкости, налитой в неподвижный сосуд, движется какое-либо тело определенной формы, то слой жидкости ММ, непосредственно соприкасающийся с поверхностью этого тела (рис. 3), как бы прилипает к ней, т.е. увлекается ею с той же скоростью.

 
 

Более удаленные слои жидкости увлекаются предыдущими, но уже с меньшими скоростями, так как между смежными слоями жидкости существует вязкая, а не жесткая связь. Каждый следующий, более удаленный от ММ слой движется со скоростью, меньшей предыдущей. Таким образом, в жидкости между её слоями действуют силы внутреннего трения, возникает градиент скорости в направлении нормали n к границе ММ.

Для шара, движущегося в жидкости, сила вязкого трения, действующего на него, вычислена Стоксом и при небольших скоростях оказалась равной:

F1 = – 6phrv.

Если шарик падает в жидкости, то кроме этой силы на него действуют еще две:

сила тяжести

и выталкивающая сила со стороны жидкости ,

где r – плотность материала шарика; rо – плотность исследуемой жидкости; g – ускорение свободного падения; r – радиус шарика.

По второму закону Ньютона ,

или в скалярной форме:

. (7)

Отсюда видно, что при F1 = – (F2 + F3), , т.е. v1 = v0 = const, скорость движения шарика в жидкости будет равномерной. Когда v1 < v0 и < 0, шарик движется замедленно до тех пор, пока не установится то же равенство: v1 = v0. Таким образом, при малых скоростях шарик движется ускоренно, а при больших – замедленно, так что по прохождении им некоторого расстояния в жидкости устанавливается равномерная скорость движения v0.

Принимая во внимание, что , где l – путь, проходимый шариком за время t при движении с постоянной скоростью, получим из формулы (7):

, (8)

где d – диаметр шарика.

Описание установки

Прибор для измерения коэффициента внутреннего трения жидкости состоит из стеклянного цилиндрического сосуда (рис.4), в который налита исследуемая вязкая жидкость. На цилиндр надеты два кольца А и В, расстояние между которыми равно l. Верхнее кольцо расположено с таким расчетом, чтобы шарик, проходя мимо него, имел уже установившуюся скорость.

В качестве падающего тела используются свинцовые дробинки.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-07-14; Просмотров: 1284; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.033 с.)
Главная | Случайная страница | Обратная связь