|
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Методы компонентного анализа
2.3.1. Пламенная фотометрия
Наиболее информативным и рентабельным методом определения концентрации ионов натрия в растворе является пламенная фотометрия. Пламенная фотометрия – один из видов эмиссионного анализа, основой которого является термическое возбуждение электронных энергетических уровней с последующим дискретным испусканием (эмиссией) квантов электромагнитного поля. Принцип метода заключается в следующем: раствор эжекцией с помощью сжатого воздуха, кислород которого является окислителем, поступает в смеситель вместе со светильным газом и дает пламя горелки с максимальной температурой 1700-1840 В пламени происходят последовательно процессы испарение воды из раствора, превращение твердых частичек в газ, атомизация
Атомы натрия переходят при возбуждении с
релаксируя с которого они испускают кванты электромагнитного поля с длиной волны 589.3 нм. Общая мощность, излучаемая атомами, описывается нелинейной функцией Больцмана, однако при постоянных параметрах процесса вырождается в линейную зависимость для малых и средних концентраций. При пламенно – фотометрическом анализе высоких концентраций кванты света принимаются соседними атомами, которые возбуждаются и вновь испускают кванты. Однако в этом процессе, который называют самопоглощением, несколько атомов в результате переизлучения испускают один квант и зависимость становится нелинейной, а метод теряет свою чувствительность.
Рис. 13. Схема пламенного фотометра. 1- анализируемый раствор, 2 – смеситель с горелкой, 3 – линза, 4 – светофильтр, 5 – фотоэлемент, 6 – микроамперметр Нами были измерены в качестве калибровочных растворы хлорида натрия в интервале 0.001 – 0.1 моль/л. Полученные результаты представлены на рис. 14. График зависимости силы фототока
Дисперсия экспериментальных значений и рассчитанных по уравнению (2.3) имеет величину 0.9985.
Рис. 14. Градуировочный график для пламенно-фотометрического определения концентрации ионов натрия.
Проведя измерения фототока определяемого раствора из пробы, находили величину фототока, помещали ее значение на оси ординат, проводили прямую линию, параллельную оси абсцисс до калибровочной кривой и из точки их пересечения опускали перпендикуляр на ось абсцисс. Эту величину рассматривали как искомую концентрацию Общий вид калибровочной кривой показывает наличие самопоглощения при концентрациях больших 0.03 моль/л. 2.3.2. Определение концентрации водородных ионов методом прямой потенциометрии Для определения концентрации водородных и гидроксильных ионов использовали метод прямой потенциометрии. Измерения рН проводили универсальным иономером ЭВ-74. Для измерений использовали гальванический элемент, составленный из стеклянного индикаторного электрода ЭСП-01-14.7 и хлорсеребряного электрода сравнения. До измерений настраивали прибор по двум стандартным растворам – эквимолярной ацетатной буферной смеси в области кислой среды и аммонийной буферной смеси в области щелочной среды.
ГЛАВА 3 РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ 3.1. Выбор электрического напряжения для определения емкости катионообменной мембраны Электродиализ является неравновесным процессом. Теорию неравновесных процессов развил Л. Онзагер при анализе электропроводности и теплопроводности анизотропных кристаллов [4, 32]. Одним из наиболее важных положений неравновесной термодинамики является теорема о производстве энтропии, позволяющая сделать корректный выбор обобщенных термодинамических сил, вызывающих явления переноса и химические реакции. Для диссипативной функции
в котором
В связи с этим в неравновесной термодинамике плотность тока (сила тока) рассматривается как поток, а силой тока является отрицательный градиент электрического потенциала. Поток ионов через ионообменную мембрану
где Нами был проведен электродиализ раствора хлорида натрия в секции 4 при напряжениях 20, 25 и 35 В. Результаты эксперимента представлены на рис. 15.
Рис. 15. Зависимость плотности тока при электродиализе 0.1 М раствора хлорида натрия при напряжениях на клеммах аппарата 20, 25 и 30 В
На рис. 14 плотность тока сначала увеличивается во времени в связи с ростом концентрации в секциях 1, 3, 5, 7, что приводит к увеличению электропроводности электромембранной системы, после чего процесс деионизации в секции 4 вызывает уменьшение концентрации носителей тока и снижению его плотности. Из представленных зависимостей для дальнейшей работы было выбрано напряжение на клеммах аппарата 25 В, так как данная зависимость уже через 50 минут электродиализа приводит к падению плотности тока до 1 мА/см2. Кроме того, максимальная плотность тока при проведении процесса при 25 В не превышает 19 мА/см2, в то время как проведение электродиализа при 35 В приводит к максимуму плотности тока 28 мА/см2. При высоких плотностях тока возможна генерация водородных ионов на межфазной границе мембраны и раствора и появлению конкурирующего переноса водородных ионов через катионообменную мембрану, если превышены предельные плотности тока. Предельная плотность тока является одним из ключевых понятий при электродиализе с ионообменными мембранами. Предельная плотность тока возникает вследствие разницы чисел переноса противоионов в униполярном проводнике второго рода – ионообменной мембране- и диполярном проводнике второго рода – растворе. Разница между ними состоит в том, что в мембране постоянный электрический ток практически переносят только ионы одного знака заряда, в частности, в катионообменных мембранах электрический ток переносят катионы, в то время как в растворе постоянный электроческий ток переносят как катионы, так и анионы. Вследствие разности потоков катионов на межфазной границе катионообменной мембраны и раствора возникает градиент концентраций, компенсирующий разность электрический потоков противоионов в мембране и растворе
(
Рис. 16 показывает сравнение экспериментальных и рассчитанных величин, дающий возможность проведения расчетов при любых концентрациях начального раствора.
Рис. 16. Зависимость предельной плотности тока от концентрации раствора хлорида натрия для мембраны МК-40. Точки - экспериментальные значения, линия рассчитана по уравнению (3.5-3.7).
Хорошее согласование экспериментальных и теоретических величин с дисперсией 0.9989 дает возможность экстраполировать предельные плотности для меньших и больших значений концентраций. Однако рассчитать предельные плотности тока для таких сложных зависимостей плотности тока от времени при переменной концентрации периодического электродиализа не представляется возможным. В то же время при в сверхпредельном состоянии возникают конкурирующие потоки водородных ионов, генерируемые межфазными границами раствора секции 4 и катионообменной мембраной, разделяющей секции 4 и 5. При миграции водородных ионов через катионообменную мембрану часть ее емкости будет занята водородными ионами. В связи с этим желательно избежать превышения предельных плотностей тока. В то же время снижение напряжения на электродиализном аппарат приводит к увеличению времени эксперимента, что также нецелесообразно. Наиболее простым способом определения превышения предельных плотностей тока является измерение рН в секции концентрирования 5. Так как предельная плотность тока в соответствии с уравнение (3.5) является функцией концентрации, то она достигается прежде всего на границе 0.1 моль/л раствора секции 4 с катионообменной мембраной. Рис. 17 показывает зависимость рН от напряжения на клеммах электродиализатора.
Рис. 17. Зависимость рН в растворе секции 5 от напряжения на аппарате при электродиализе 0.1 моль/л раствора хлорида натрия.
В интервале напряжений на клеммах аппарата от 20 до 30 В мы имели слабокислую среду с
которые обладают значительно более высокими скоростями генерации гидроксильных ионов, чем скорости генерации водородных ионов сульфогруппами катионообменной мембраны [23]. В связи с этим при напряжении 35 В в растворе секции 4 образуется слабощелочная среда. Выбор напряжения 34 В мог бы избавить от сдвига рН из нейтральной области, однако в данном случае это не может предотвратить конкурирующий с ионами натрия транспорт водородных ионов, так как нейтральная среда достигается при данном напряжении за счет равенства потоков водородных ионов через катионообменную мембрану, разделяющую секции 4 и 5, и гидроксильных ионов анионообменную мембрану, разделяющую секции 5 и 6. Поэтому выбор напряжения 34 В не изменил бы величину потока конкурирующего с ионами натрия потоков водородных ионов.
Популярное: |
Последнее изменение этой страницы: 2017-03-03; Просмотров: 554; Нарушение авторского права страницы