![]() |
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Оценка существенности параметров линейной
Регрессии и корреляции После того, как найдено уравнение линейной регрессии (3), проводится оценка значимости как уравнения в целом, так и отдельных его параметров. Оценка значимости уравнения регрессии в целом дается с помощью F- критерия Фишера. При этом выдвигается нулевая гипотеза Перед расчетом критерия проводятся анализ дисперсии. Можно показать, что общая сумма квадратов отклонений (СКО) y от среднего значения
или, соответственно:
(Общая СКО) =
Здесь возможны два крайних случая: когда общая СКО в точности равна остаточной и когда общая СКО равна факторной. В первом случае фактор х не оказывает влияния на результат, вся дисперсия y обусловлена воздействием прочих факторов, линия регрессии параллельна оси Ох и Во втором случае прочие факторы не влияют на результат, y связан с x функционально, и остаточная СКО равна нулю. Однако на практике в правой части (13) присутствуют оба слагаемых. Пригодность линии регрессии для прогноза зависит от того, какая часть общей вариации y приходится на объясненную вариацию. Если объясненная СКО будет больше остаточной СКО, то уравнение регрессии статистически значимо и фактор х оказывает существенное воздействие на результат y.Это равносильно тому, что коэффициент детерминации будет приближаться к единице. Число степеней свободы. (df-degrees of freedom)- это число независимо варьируемых значений признака. Для общей СКО требуется (n-1) независимых отклонений, т.к. Факторную СКО можно выразить так: Эта СКО зависит только от одного параметра b, -поскольку выражение под знаком суммы к значениям результативного признака не относится. Следовательно, факторная СКО имеет одну степень свободы, и Для определения
Таким образом, можем записать: Из этого баланса определяем, что Разделив каждую СКО на свое число степеней свободы, получим средний квадрат отклонений, или дисперсию на одну степень свободы:
Сопоставляя факторную и остаточную дисперсии в расчете на одну степень свободы, получим
Если Вычисленное значение F признается достоверным (отличным от единицы), если оно больше табличного, т.е. Fфактич> Fтабл(α; 1; n-2). В этом случае Если В рассмотренном примере:
это общая СКО.
На любом уровне значимости Величина F- критерия связана с коэффициентом детерминации.
В линейной регрессии обычно оценивается значимость не только уравнения в целом, но и отдельных его параметров. Стандартная ошибка коэффициента регрессии определяется по формуле:
В рассмотренном примере: Величина стандартной ошибки совместно с t – распределением Стьюдента при n-2 степенях свободы применяется для проверки существенности коэффициента регрессии и для расчета его доверительных интервалов. Величина коэффициента регрессии сравнивается с его стандартной ошибкой; определяется фактическое значение t – критерия Стьюдента
которое затем сравнивается с табличным значением при определенном уровне значимости α и числе степеней свободы (n-2). Здесь проверяется нулевая гипотеза в виде Н0: b=0, также предполагающая несущественность статистической связи между y и х, но только учитывающая значение b, а не соотношение между факторной и остаточной дисперсиями в общем балансе дисперсии результативного признака. Однако общий смысл гипотез один и тот же: проверка наличия статистической связи между y и х или её отсутствия. Если tb> tтабл(α ; n-2), то гипотеза Н0: b=0 должна быть отклонена, а статистическая связь y с х считается установленной. В случае tb< tтабл(α ; n-2) нулевая гипотеза не может быть отклонена, и влияние х на y признается несущественным. В рассмотренном примере: Для двустороннего α =0, 05 и n-2=5 tтабл=2, 57, tb> tтабл, поэтому гипотезу о несущественности b следует отклонить. Существует связь между Отсюда следует, что
. Доверительный интервал для b определяется как
где 95%-ные границы в примере составят: т.е. Коэффициент регрессии имеет четкую экономическую интерпретацию, поэтому доверительные границы интервала не должны содержать противоречивых результатов, например, Стандартная ошибка параметра
Процедура оценивания существенности a не отличается от таковой для параметра b. При этом фактическое значение t-критерия вычисляется по формуле:
Процедура проверки значимости линейного коэффициента корреляции отличается от процедур, приведенных выше. Это объясняется тем, что r как случайная величина распределена по нормальному закону лишь при большом числе наблюдений и малых значениях |r|. В этом случае гипотеза об отсутствии корреляционной связи между y и х H0: r=0 проверяется на основе статистики
которая при справедливости H0 приблизительно распределена по закону Стьюдента с (n-2) степенями свободы. Если Однако при малых выборках и значениях r, близких к Чтобы обойти это затруднение, используется так называемое z-преобразование Фишера:
которое дает нормально распределенную величину z, значения которой при изменении r от –1 до +1 изменяются от -∞ до +∞. Стандартная ошибка этой величины равна:
Для величины z имеются таблицы, в которых приведены её значения для соответствующих значений r. Для z выдвигается нуль-гипотеза H0: z=0, состоящая в том, что корреляция отсутствует. В этом случае значения статистики
которая распределена по закону Стьюдента с (n-2) степенями свободы, не превышает табличного на соответствующем уровне значимости. Для каждого значения z можно вычислить критические значения r. Таблицы критических значений r разработаны для уровней значимости 0, 05 и 0, 01 и соответствующего числа степеней свободы. Если вычисленное значение r превышает по абсолютной величине табличное, то данное значение r считается существенным. В противном случае фактическое значение несущественно.
Популярное:
|
Последнее изменение этой страницы: 2017-03-03; Просмотров: 640; Нарушение авторского права страницы