Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Достоинства и недостатки железобетонных конструкций
К достоинствам железобетонных конструкций относятся: · высокая прочность: · большая долговечность; · высокая степень огнестойкости; · стойкость против атмосферных воздействий; · малые эксплуатационные расходы на содержание; · гигиеничность; · экономичность ввиду повсеместной доступности сырья. Недостатки железобетонных конструкций. За счет сцепления с арматурой бетон работает под нагрузкой совместно с арматурой. Предельная растяжимость бетона в тысячу раз меньше предельной растяжимости стальной арматуры, поэтому при совместном растяжении цельность бетона сохраняется только в начальный период эксплуатации (см. рис. 1, б). Напряжения в арматуре в период образования трещин всегда незначительны по сравнению с предельной прочностью арматуры. С увеличением внешней нагрузки в изгибаемых балках происходит развитие по высоте сечения балки трещин, резко уменьшается высота сжатой зоны, снижается жесткость балки, что приводит к возрастанию прогиба. С учетом вышеизложенного к недостаткам железобетонных конструкций без предварительного напряжения относятся: · низкая трещиностойкость вследствие слабого включения в работу арматуры в период образования трещин, быстрое их раскрытие и быстрый рост прогибов; · нерациональность использования в железобетонных конструкциях без предварительного напряжения высокопрочной арматуры; · невыгодность использования бетонов повышенной и высокой прочности, поэтому железобетонные конструкции без предварительного напряжения обладают большой массой, что ограничивает величину перекрываемых пролетов; · большая трудоемкость при изготовлении; · большая звуко- и теплопроводность. Виды железобетонных конструкций 1. Сборные конструкции – конструкции, возведение которых на строительной площадке производят из заранее изготовленных элементов. 2. Монолитные конструкции – конструкции, возведение которых осуществляют непосредственно на строительной площадке. 3. Сборно–монолитные конструкции – комплексные конструкции, в которых сборный и монолитный железобетон, укладываемый на месте строительства, работает под нагрузкой как одно целое. Лекция №3. Бетон Общие сведения Для обеспечения долговечной и нормальной эксплуатации бетон для железобетонных конструкций должен иметь необходимые для этого физико-механические свойства:
Классификация бетонов 1. По структуре: а) плотные; б) крупнопористые; в) поризованные; г) ячеистые. 2. По плотности: а) особо тяжелые (ρ > 2500 кг/м3); б) тяжелые (ρ = 2200 ÷ 2500 кг/м3); в) облегченные (чаще мелкозернистые) (ρ = 1800 ÷ 2200 кг/м3); г) легкие (ρ = 800 ÷ 1800 кг/м3). 3. По виду заполнителей: а) на плотных заполнителях (щебень, песок, гравий); б) на пористых заполнителях (естественных – пемза, перлит, ракушечник; искусственных – керамзит, шлак); в) на специальных заполнителях. 4. По зерновому составу: а) крупнозернистые; б) мелкозернистые. 5. По условиям твердения: а) бетоны естественного твердения; б) бетоны, подвергнутые тепловлажностной обработке при атмосферном давлении; в) бетоны, подвергнутые автоклавной обработке при высоком давлении и температуре.
Структура бетона Структура бетона оказывает большое влияние на прочность и деформативность бетона. Существенным фактором является количество воды, применяемой для приготовления бетонной смеси, оцениваемое водоцементным отношением В/Ц. Для химического соединения воды с цементом необходимо, чтобы В/Ц ≈ 0, 2; однако для достижения достаточной подвижности и удобоукладываемости бетонной смеси В/Ц=0, 5…0, 6 (подвижные бетонные смеси); В/Ц=0, 3…0, 4 (жесткие бетонные смеси). Избыточная химически несвязанная вода образует поры и капилляры в цементом камне, а затем, испаряясь, освобождает их. Таким образом, с уменьшением В/Ц уменьшается пористость цементного камня и прочность бетона увеличивается. Структура бетона представляет собой пространственную решетку из цементного камня, заполненную зернами песка и щебня различной крупности и формы, пронизанную большим числом микропор и капилляров, которые содержат химически несвязанную воду, водяные пары и воздух.
Собственные деформации бетона Бетон обладает свойством уменьшаться в объеме при твердении в обычной воздушной среде – усадка бетона. Она связана с физико-механическими процессами твердения и уменьшением объема цементного геля, потерей избыточной воды в результате испарения и гидратации с непрореагировавшими частицами цемента. Усадке бетона препятствуют заполнители, которые становятся внутренними связями, вызывающими в цементном камне начальные растягивающие напряжения. Неравномерное высыхание бетона, снаружи больше, а внутри меньше, приводит к неравномерной усадке, что ведет к возникновению начальных усадочных напряжений. Открытые, быстро высыхающие слои бетона испытывают растяжение; внутренние более влажные оказываются сжатыми. В бетоне появляются усадочные трещины. Уменьшить начальные усадочные напряжения можно:
· технологическими мерами (подбор состава, увлажнение среды, увлажнение поверхности бетона).
Прочность бетона Прочность бетона зависит от многих факторов, как-то:
Кубиковая прочность Для определения прочности бетона на осевое сжатие обычно испытывают в прессе бетонные кубы с размером ребра 150 мм, характер разрушения которых обусловлен наличием или отсутствием сил трения, возникающих на контактных поверхностях между подушками пресса и гранями куба.
Силы трения между подушками пресса и гранями куба препятствуют свободным поперечным деформациям куба и соответственно упрочняют бетон сверху и снизу. По мере удаления от торцевых граней куба влияние сил трения уменьшается, поэтому после разрушения куб приобретает форму 2-х пирамид сверху и снизу.
Если устранить силы трения смазкой контактных поверхностей, прочность бетонного куба будет меньше, поперечные деформации проявляются свободно, трещины разрыва становятся вертикальными. Временное сопротивление сжатию бетона для куба с ребром 150 мм равно R, с ребром 200 мм - 0, 93 R, с ребром 100 мм – 1, 1R. Это объясняется изменением эффекта обоймы с изменением размеров куба.
а) б) Рис. 2. Характер разрушения бетонных кубов: а – несмазанный куб; б – смазанный куб; Δ – поперечные деформации бетона. 3.5.2. Призменная прочность Так как железобетонные конструкции по форме отличаются от кубов, основной характеристикой прочности бетона сжатых элементов является призменная прочность Rb – временное сопротивление осевому сжатию бетонных призм. Призменная прочность меньше кубиковой, и она уменьшается с увеличением отношения h/a. Влияние сил трения на среднюю часть призмы уменьшается с увеличением ее высоты и при h/a=4 значение Rb становится стабильным и равно приблизительно 0, 75R.
Рис. 3. Характер разрушения бетонной призмы. Популярное:
|
Последнее изменение этой страницы: 2017-03-08; Просмотров: 895; Нарушение авторского права страницы