Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Испытания материалов на одноосное растяжение. Диаграмма растяжения.



В этих испытаниях образец стандартной формы (в виде прутка с утолщениями на торцах) закрепляется в зажимах разрывной машины и к его концам прикладывается плавно нарастающая, растягивающая сила F.

 

  F S0 F     l0

где S0 - начальная площадь поперечного сечения прутка, l0 - начальная длина.

В процессе испытания измеряется относительное удлинение образца или иначе его деформация ε в %, а также напряжение в образце σ в МПа:

, (4.2)

В результате получают диаграмму растяжения материала, то есть график зависимости напряжения от деформации.

Рассмотрим типичную для металлов диаграмму растяжения.

Рис.4.2. Диаграмма растяжения материала

На данной диаграмме выделяются 4 характерных участка: ОА, АВ, ВС и СD. Участок ОА (намерено увеличенный для наглядности) соответствует упругой деформации. На этом участке наблюдается линейная зависимость напряжения от деформации, то есть . Разгрузка образца здесь происходит по той же линии ОА, но в обратном направлении. Когда напряжение становится равным нулю ( σ = 0) деформация полностью исчезает (ε = 0).

Коэффициент пропорциональности Е называют модулем упругости. Его величина характеризует жёсткость материала. Чем больше Е, тем круче участок ОА и, соответственно, выше жёсткость материала.

При напряжении σ T нарушается пропорциональность между деформацией и напряжением. Наряду с упругой деформацией появляется пластическая составляющая. Напряжение σ T называют пределом текучести. У некоторых пластичных металлов при этом напряжении на диаграмме растяжения наблюдается горизонтальный участок АВ (площадка текучести), на котором пластическая деформация образца происходит без заметного повышения напряжения. В этом случае предел текучести является реальным, физически фиксируемым. Для тех материалов, у которых такой площадки не наблюдается, используют условный предел текучести σ 0, 2 - это такое напряжение, при котором остаточная пластическая деформация составляет величину 0, 2%.

Если напряжение на образце превышает предел текучести (точка F), то деформация образца имеет две составляющие:      УПР    ОСТ. Разгрузка образца в таком случае происходит не по линии нагрузки, а по линии FG, параллельной участку ОА. При этом упругая составляющая деформации исчезает, а пластическая сохраняется.

В точке С наблюдается максимальное напряжение, предшествующее разрушению материала. Это максимальное напряжение σ B называют временным сопротивлением или пределом прочности. σ T и σ В характеризуют прочность материала. Чем они больше, тем прочнее материал.

Участок CD соответствует появлению и развитию на образце локального сужения (шейки). Фактическое напряжение здесь продолжает увеличиваться за счёт уменьшения площади поперечного сечения образца, но регистрируемое напряжение     F / S0 уменьшается. Точка D соответствует разрыву образца.

Площадь под кривой растяжения пропорциональна работе разрушения материала. Чем больше эта площадь, тем больше работа разрушения и соответственно выше вязкость материала

Величину называют относительным удлинением, а величину относительным сужением.

Обе эти величины характеризуют пластичность материала. Чем они больше, тем пластичней материал. Если , а , то материал считается надёжным.

 

20.Механизм упругой и пластической деформации. Роль дислокаций в механизме сдвига атомных слоёв при пластической деформации.

При упругой деформации атомы материала смещаются на небольшие расстояния относительно друг друга. При этом возникают межатомные силы притяжения или отталкивания, в зависимости от того сближаются или удаляются атомы. После снятия внешней нагрузки атомы материала под действием этих сил возвращаются в своё исходное, равновесное положение. В результате размеры и форма образца полностью восстанавливаются, то есть деформация оказывается обратимой.

При пластической деформации происходит сдвиг одной части материала относительно другой части. Сдвиг осуществляется по атомным плоскостям, которые называют плоскостями скольжения.

После снятия внешней нагрузки, сдвинутые атомные плоскости в исходное положение не возвращаются, поэтому пластическая деформация является необратимой. Обычно в роли плоскостей скольжения выступают наиболее плотноупакованные атомные плоскости слабо связанные друг с другом межатомными силами.

В первую очередь сдвиг происходит по плоскостям скольжения, расположенным под углом 45 градусов к внешней нагрузке, так как в этих плоскостях создаётся наибольшее сдвиговое напряжение   T:

 
 


S0
α
F

Fn
                T = max, при     

 

В следующий момент в движение вовлекаются другие плоскости, расположенные под углом больше и меньше 45 градусов (46, 44; - 47, 43 и т.д.)

Теоретические расчеты показывают, что для сдвига одной части металла относительно другой части требуются напряжения, в сотни раз превосходящие те, которое наблюдаются в действительности. Причина столь сильного отличия теоретической прочности металлов от их реальной прочности заключается в том, что атомные слои при пластической деформации смещаются не сразу целиком, а поэтапно, т.е. атомными рядами. Для реализации такого механизма смещения необходимо отсутствие хотя бы одного атомного ряда в плоскости скольжения. В реальных металлах подобные дефекты структуры всегда присутствуют и в большом количестве, это дислокации. Благодаря дислокациям сдвиг атомных слоёв происходит при гораздо меньших напряжениях.

Схема дислокационного механизма сдвига атомных слоёв следующая:

Как видно из рисунка смещение атомной плоскости можно рассматривать как движение дислокации в обратном направлении. При выходе дислокации на поверхность кристалла образуется своеобразная «ступенька» и таким образом реализуется сдвиг одной части кристалла относительно другой его части.

Чем легче перемещаются дислокации, тем меньше напряжения, при которых осуществляется сдвиг атомных слоёв, и следовательно пластическая деформация. Прочность бездефектных кристаллов, так называемых «усов», близка к теоретической.

С увеличением плотности дислокаций прочность материалов сначала уменьшается, а затем начинает плавно возрастать.

 

 

Отожженные металлы
Усы
s, МПа
r, см-2
Возрастание прочности металлов с повышением плотности дефектов обусловлено ограничением подвижности дислокаций из-за резкого увеличения интенсивности их взаимодействия.

 

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2017-03-08; Просмотров: 1117; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.014 с.)
Главная | Случайная страница | Обратная связь