Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
НЕРВНАЯ ТКАНЬ - II. НЕРВНЫЕ ВОЛОКНА И ОКОНЧАНИЯ
Нервные волокна - это отростки нейронов, покрытые глиальными оболочками. Отростки нейронов лежат внутри нервных волокон и называются осевыми цилиндрами. Их окружают глиальные клетки - олигодендроциты, которые здесь называются леммоцитами (оболочечными клетками), или шванновскими клетками. Нервные волокна бывают миелиновые и безмиелиновые.
Миелиновые нервные волокна. Они толще безмиелиновых, содержат только по одному осевому цилиндру (2-20 мкм). Поскольку миелин представляет собой обмотку из липидных мембран, на гистологических препаратах он хорошо импрегнируется осмиевой кислотой. Остатки цитоплазмы леммоцитов сохраняются между витками мезаксона, образуя насечки миелина. Они не окрашиваются осмиевой кислотой и поэтому видны на фоне миелина в виде косых светлых полос. Участки волокна, не покрытые миелином, называются узловыми перехватами Ранвье. Они находятся между двумя соседними леммоцитами. Соответственно, участок волокна, образованный одной глиальной клеткой, именуется межузловым сегментом. Снаружи всё волокно, включая узловые перехваты, покрыто базальной мембраной. По миелиновым волокнам нервный импульс передается с большой скоростью, до 120 м/сек.
Безмиелиновые нервные волокна. Они состоят из тяжа леммоцитов, которые содержат несколько (10-20) осевых цилиндров, погруженных в леммоциты. Поэтому безмиелиновые нервные волокна называют волокнами кабельного типа. Каждый из осевых цилиндров как бы подвешен в цитоплазме леммоцита на сдвоенной мембране (мезаксон), как на брыжейке. Такие волокна чаще встречаются в периферической части вегетативной нервной системы. Нервный импульс по ним проводится медленно (1-2 м/сек).
Регенерация нейронов и нервных волокон Нейроны взрослых человека и животных не способны к делению, клеточной регенерации. Однако у них хорошо развита внутриклеточная регенерация: обновление макромолекул и органелл. При гибели одних нейронов сохранившиеся нейроны гипертрофируются и берут на себя функции погибших. Возможно также восстановление повреждённых отростков нейронов и, соответственно, регенерация периферических нервов.
После перерезки нервного волокна наступает дегенерация осевого цилиндра дистальней места повреждения. Леммоциты и макрофаги фагоцитируют продукты распада, очищают место повреждения, а затем размножаются и образуют тяжи - ленты Вюнгнера. На проксимальном отрезке осевого цилиндра образуется наплыв аксоплазмы - формируется колба роста (как в эмбриогенезе). Осевой цилиндр растёт по дорожке из леммоцитов со скоростью 2-4 мм в сутки до тех пор, пока не достигает иннервируемого органа. После этого вокруг новообразованного осевого цилиндра леммоциты образуют миелиновую оболочку, а в рабочем органе вновь формируется (восстанавливается) нервное окончание. Эти процессы завершаются в течение нескольких месяцев от момента повреждения.
Однако, если возникает препятствие на пути роста осевых цилиндров, они начинают расти беспорядочно и образуют клубок, называемый ампутационной невромой. При её раздражении возникает сильная боль, которая воспринимается как происходящая из первоначально иннервируемой области, например, как боль в ампутированной конечности (фантомные боли).
Нервные окончания
Все нервные волокна заканчиваются концевыми аппаратами, называемыми нервными окончаниями. По функции они делятся на эффекторные, рецепторные и межнейрональные синапсы. Нервный импульс в организме человека обычно передаётся с одной нервной клетки на другую или с нейрона на рабочий орган через медиатор, химический посредник. Медиатор взаимодействует со специфическими рецепторами другого нейрона или клеток рабочего органа и через каскад вторичных внутриклеточных посредников меняет функцию другого нейрона или рабочего органа. Межнейрональные синапсы Это коммуникационные соединения между нейронами. По расположению различают аксосоматические синапсы (когда аксоны одного нейрона оканчиваются на теле другого нейрона), аксодендритические (аксоны одного нейрона оканчиваются на дендритах другого нейрона) и аксо-аксональные (аксоны одного нейрона заканчиваются на аксонах другого нейрона, обычно тормозя функцию последнего).
Синапсы состоят из двух частей: пресинаптической и постсинаптической. Пресинаптическая часть синапса образована колбовидным расширением аксона с пресинаптической мембраной и содержит синаптические пузырьки со специальными биологически активными химическими веществами, медиаторами (посредниками). Постсинаптическая часть синапса включает в себя участок постсинаптической мембраны воспринимающего нейрона, в которой находятся специфические рецепторы, с которыми взаимодействуют медиаторы. Между пре- и постсинаптическими мембранами находится синаптическая щель шириной 20-30 нм. По химической природе используемого медиатора различают синапсы:
1. Холинергические (медиатор - ацетилхолин). 2. Аминергические (медиаторы — биогенные амины: адреналин, норадреналин, дофамин, серотонин, гистамин и др.). 3. ГАМКергические (медиатор - гаммааминомасляная кислота). 4. Аминокислотергические (медиаторы - аминокислоты: глутамат, аспартат). 5. Пептидергические (медиаторы - пептиды). 6. Пуринергические (пуриновые нуклеотиды)
Пресинаптические нейроны, образующие синапсы и синтезирующие и выделяющее эти медиаторы, называются, соответственно, холинергическими, аминергическими, ГАМКергическими, и др. Постсинаптические нейроны с рецепторами к этим медиаторам называются, соответственно, холино-, амино-, или ГАМК-реактивными
Синаптическая передача. Это сложный каскад событий, включающий в себя следующие этапы: синтез нейромедиатора, его накопление и хранение в синаптических пузырьках вблизи пресинаптической мембраны, высвобождение нейромедиатора в синаптическую щель, кратковременное взаимодействие нейромедиатора с рецептором, встроенным в постсинаптическую мембрану, разрушение нейромедиатора или обратный захват его пресинаптической мембраной.
Многие наркотики (кокаин, амфетамин) и психотропные лекарственные препараты действуют через системы захвата нейромедиаторов. При некоторых нервно-психических заболеваниях нарушается синтез белков-транспортёров.
Рецепторы к нейромедиаторам – это специальные белки, расположенные е постсинаптической мембране. Они бывают двух типов: связанные с ионными каналами и не связанные с ними. Рецепторы, связанные с ионными каналами, опосредуют быстрые постсинаптические эффекты, проявляющиеся в течение нескольких миллисекунд. Ацетилхолин, аспартат, АТФ и глутамат открывают катионные каналы (для ионов Na), что ведет к возникновению быстрых возбудительных постсинаптических потенциалов. ГАМК и глицин открывают анионные каналы (для ионов Cl) и в результате возникают быстрые тормозные постсинаптические потенциалы.
Рецепторы, не связанные с ионными каналами, опосредуют медленные, но продолжительные эффекты нейромедиаторов (лежат в основе обучения и памяти). Они сопряжены с ферментами, которые в присутствии нейромедиатора катализируют образование внутриклеточного посредника (вторичного медиатора), например, ЦАМФ (циклического аденозинмонофосфата) В свою очередь, этот посредник вызывает целый каскад молекулярных сдвигов вызывающих изменения в постсинаптической клетке, в том числе модификацию ионных каналов в клеточной мембране. Процесс синаптической передами в динамике протекает, следующим образом. Когда, проходящая по аксону волна возбуждения (нервный импульс) достигает синапса, открываются находящиеся в пресинаптической мембране Са2+ каналы. При этом ионы Са2+, входят в пресинаптическую часть синапса и стимулируют экзоцитоз нейромедиатора. В результате этого пресинаптические пузырьки сливаются с пресинаптической мембраной, медиатор высвобождается в синаптическую щель и воздействует на рецепторы постсинаптической мембраны. После этого в постсинаптическом нейроне запускается описанный выше каскад биохимических реакций, меняющий его функцию и вызывающий его возбуждение или торможение.
Тем временем, очень быстро (в течение нескольких мс), медиатор в синаптической щели разрушается специальными ферментами, находящимися в постсинаптической мембране. Продукты распада медиатора захватываются пресинаптическим нейроном, где происходит быстрый ресинтез медиатора и вновь накопление его в синаптических пузырьках.
Многие неврологические и психические заболевания развиваются в результате нарушения синаптической передачи. Целый ряд химических веществ и лекарственных препаратов влияют на синаптическую передачу (психотропные, психофармакологические средства).
Эффекторные нервные окончания Эффекторные нервные окончания передают нервные импульсы от эффекторных нейронов рабочим органам (мышцы, железы). Соответственно, нейроны бывают двух типов - двигательные и секреторные.
Двигательные нервные окончания - концевые аппараты двигательных нейронов (мотонейронов), которые оканчиваются на мышце. Двигательные окончания в поперечнополосатых мышцах называются нервно-мышечными окончаниями. Они состоят из концевого ветвления осевого цилиндра нервного волокна (пресинаптическая часть) и специализированного участка мышечного волокна (постсинаптическая часть). Миелиновое нервное волокно, подойдя к мышечному волокну, теряет миелиновую оболочку и погружается в мышечное волокно, вдавливая его сарколемму. Плазмолемма, покрывающая ветвления аксона, является пресинаптической мембраной, а сарколемма, покрывающая в этом участке мышечное волокно, становится постсинаптической мембраной. Между ними расположена синаптическая щель шириной около 50 нм. В терминальных ветвлениях аксона расположены многочисленные синаптические пузырьки, содержащие медиатор ацетилхолин. При прохождении по аксону нервного импульса ацетилхолин выделяется в синаптическую щель и действует на холинорецепторы постсинаптической мембраны. Это вызывает деполяризацию постсинаптической мембраны, которая передается по Т-трубочкам на всю толщину мышечное волокно и достигает цистерн саркоплазматической сети. Из них выделяются ионы кальция, под действием которых происходит взаимодействие между актиновыми и миозиновыми нитями и сокращение мышечного волокна. После этого ацетилхолин быстро разрушается ферментом ацетилхолинэстеразой, расположенной а постсинаптической мембране.
Двигательные нервные окончания на клетках гладкомышечной ткани представляют собой многочисленные четкообразные (варикозные) утолщения аксонов мотонейронов, содержащие пресинаптические пузырьки с ацетилхолином или норадреналином. Здесь нет ограниченных синаптических образований, содержащих активные зоны, определяющие точные места выхода нейромедиатора. Кроме того, эти утолщения не прилегают к каким-либо специализированным рецептивным участкам постсинаптической клетки. Вместо этого медиатор диффундирует в широких пределах, воздействуя сразу на рецепторы нескольких клеток, расположенных вблизи, паракринным способом (подобно местным гормонам). Аналогичным образом построены и работают секреторные нервные окончания на железистых клетках.
Эффекторные окончания на поперечнополосатой мускулатуре обычно образуются нейронами двигательных ядер передних рогов спинного мозга или ствола головного мозга, а эффекторные окончания на гладкомышечных и секреторных клетках - нейронами вегетативной нервной системы.
Рецепторные (чувствительные) нервные окончания (рецепторы). Это окончания дендритов рецепторных (чувствительных) нейронов. Последние расположены только в спинномозговых ганглиях или чувствительных ядрах черепно-мозговых нервов. Рецепторы рассеяны по всему организму и воспринимают раздражения как из внешней среды (экстерорецепторы), так и внутренней среды (интерорецепторы). По виду воспринимаемого раздражения рецепторы делят на барорецепторы (воспринимают давление), хеморецепторы (химические вещества), терморецепторы (температуру) и др.
По строению рецепторы делят на свободные (состоят только из конечных ветвлений осевого цилиндра) и несвободные (окружены клетками нейроглии и соединительной ткани). Если несвободные рецепторы окружены соединительнотканной капсулой, то их называют инкапсулированные, а не имеющие такой капсулы - неинкапсулированные рецепторы.
Свободные нервные окончания характерны для эпителия. Нервное волокно, подходя к эпителиальному пласту, теряет миелиновую оболочку, а осевой цилиндр распадается на мельчайшие веточки, которые проходят между эпителиальными клетками. Для соединительной ткани характерны несвободные рецепторы.
Примером инкапсулированных рецепторов могут служить пластинчатые тельца Фатер-Пачини (барорецепторы). В центре такого тельца расположена внутренняя луковица, состоящая из глиальных клеток, которые возбуждаются при изменении давления. Внутрь луковицы входят ветвления осевого цилиндра дендрита, которые снимают возбуждение с глиальных клеток. Снаружи расположена многослойная соединительнотканная капсула. Между слоями капсулы находится жидкость, которая передаёт давление.
Другим примером инкапсулированных рецепторов являются осязательные тельца Мейснера, расположенные в сосочках дермы кожи. Внутри них расположен изгибающийся осевой цилиндр, окружённый видоизменёнными нейролеммоцитами, тактильными клетками, а вокруг - тонкая однослойная соединительнотканная капсула. Коллагеновые волокна связывают тактильные клетки с капсулой, а капсулу с базальной мембраной эпидермиса так, что любое смещение эпидермиса передаётся на осязательные клетки, возбуждение с которых снимается ветвлениями осевого цилиндра. К рецепторам скелетных мышц относятся нервно-мышечные и нервно-сухожильные веретёна, воспринимающие изменения длины мышечных волокон и степень натяжения сухожилия.
Рефлекторные дуги Нервная система функционирует по рефлекторному принципу. Морфологическим субстратом её работы являются рефлекторные дуги,
Рефлекторная дуга представляет собой цепочку нейронов, связанных между собой синапсами и обеспечивающую проведение нервного импульса от рецептора чувствительного нейрона до эффектора в рабочем органе. Различают простые и сложные рефлекторные дуги. Простая рефлекторная дуга состоит из двух нейронов - чувствительного и двигательного. Сложная рефлекторная дуга включает ещё и вставочные нейроны. Рефлекторные дуги в ЦНС обычно содержат несколько вставочных нейронов.
В рефлекторной дуге возбуждение передается только в одном направлении: от рецептора по дендриту чувствительного нейрона к его перикариону, затем по его аксону через межнейрональный синапс к дендриту и телу вставочного нейрона, оттуда по аксону вставочного нейрона через синапс к дендриту эффекторного (двигательного или секреторного) нейрона, через его перикарион и аксон к эффектору в рабочем органе (мышца или железа).
НЕРВНАЯ СИСТЕМА -1
Частная гистология - раздел гистологии, изучающий микроскопическое строение органов (микроскопическая анатомия). Орган - морфологически обособленная и функционально специализированная часть организма. Органы состоят из всех четырёх типов тканей, закономерно расположенных и выполняющих определённые функции. При этом эпителий может выполнять специфическую секреторную функцию, мышечная ткань обеспечивает движение органа или крови в кровеносных сосудах, соединительная ткань выполняет опорную и трофическую функцию, а нервная ткань обеспечивает нервную регуляцию органа.
По плану строения все органы можно разделить на два типа: паренхиматозные и слоистые.
Паренхиматозные органы состоят из паренхимы и стромы. Паренхима - высокоспециализированная часть органа, выполняющая его основные специфические функции Например, в головном и спинном мозге паренхима образована нервной тканью, в печени, поджелудочной железе, почках, эндокринных органах - эпителиальной, в мышцах - мышечной, в костях - костной. Строма представлена соединительнотканной капсулой, окружающей орган снаружи и отходящими от неё прослойками соединительной ткани, по которым вглубь органа проходят питающие орган кровеносные сосуды и нервы. Она выполняет вспомогательные опорную, трофическую и защитную функции.
Слоистые органы - органы, в которых клетки и ткани расположены послойно и образуют три оболочки: внутреннюю, среднюю и наружную. Например, в пищеводе, желудке, кишечнике, воздухоносных и мочевыделительных путях, внутренняя оболочка - слизистая, средняя - мышечная, а наружная - серозная или адвентициальная, а в кровеносных сосудах внутренняя оболочка - intima, средняя - tunica media, а наружная - tunica adventitia. Соответственно, оболочки состоят из слоев или пластинок.
Структурно-функциональная единица органа - наименьшая часть органа, выполняющая его основные функции. Например, для печени такой единицей является печёночная долька, для почек - нефрон, для желудка - желудочная железа, для лёгких и поджелудочной железы - ацинус, для щитовидной железы - фолликул. В каждом органе содержатся миллионы таких единиц, в совокупности обеспечивающих определённую структурную организацию и функционирование органа.
Органы в организме не являются автономными структурами; они подчинены регуляторным механизмам организма, влияют друг на друга и на организм в целом. Морфологически и функционально связанные между собой органы объединяются в системы органов (пищеварительная, дыхательная, мочевыделительная и др.), которые взаимодействуют между собой и в совокупности образуют целостный организм Нарушение работы одного органа или системы органов приводит к нарушению структуры и функции других органон и всего организма. НЕРВНАЯ СИСТЕМА Нервная система обеспечивает восприятие, хранение и переработку информации, поступающей из внешней и внутренней среды, регуляцию и интеграцию всех органов и систем организма и его взаимодействие с окружающей средой.
Общий план строения. Анатомически нервную систему условно делят на центральную и периферическую. К центральной нервной системе (ЦНС) относят головной и спинной мозг, к периферической - нервные узлы (ганглии), нервы и нервные окончания.
Нервная система подразделяется также на вегетативную, иннервирующую внутренние органы, сосуды и железы, и соматическую, иннервирующую все остальные части тела («сому»), основной частью которой является скелетная мускулатура.
Все органы нервной системы - паренхиматозные. Они состоят из стромы и паренхимы. Строма выполняет вспомогательные функции (опорную, трофическую, защитную) и образована соединительнотканной оболочкой, окружающей органы, а также прослойками рыхлой соединительной ткани с кровеносными сосудами, идущими вглубь паренхимы. Паренхима выполняет главные, специфические функции (воспринимает раздражения, генерирует нервные импульсы, вызывает ответные реакции) и образована нервной тканью.
Тела нейронов образуют серое вещество головного и спинного мозга и нервных узлов, а их отростки - белое вещество мозга и нервы. Глиальные клетки расположены по всей нервной системе, создавая условия для нормальной работы нейронов.
Источники развития. Нервная система развивается из нервной трубки, ганглиозной пластинки и плакод. Из головной части нервной трубки развиваются головной мозг и органы чувств, из туловищной части - спинной мозг, из ганглиозной пластинки - периферические нервные узлы. В нервной трубке различают три слоя: вентрикулярный (эпендимный), выстилающий полость нервной трубки (из него образуются нейроциты и макроглия головного и спинного мозга), плащевой зоной (образуется серое вещество головного и спинного мозга) и краевую вуаль (из неё образуется белое вещество). Полость нервной трубки превращается в процессе эмбриогенеза в каналы и желудочки спинного и головного мозга. Популярное:
|
Последнее изменение этой страницы: 2017-03-08; Просмотров: 946; Нарушение авторского права страницы