|
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Представление числовой информации
Системы счисления Система счисления – это способ представления чисел и соответствующие ему правила действия над числами. Разнообразные системы счисления, которые существовали и раньше и которые используются и в наше время, можно разделить на непозиционные и позиционные. Знаки, используемые при записи чисел, называются цифрами. В непозиционных системах счисления от положения цифры в записи числа не зависит величина, которую она обозначает. Примером непозиционной системы счисления является римская система (римские цифры). В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от ее позиции. Количество используемых цифр называется основанием позиционной системы счисления. Примеры алфавитов нескольких систем: Таблица 1. Алфавиты систем счисления
Если требуется указать основание системы, к которой относится число, то оно приписывается нижним индексом к этому числу. Например: Для перевода чисел из двоичной системы в десятичную используется ряд степеней двойки: Таблица 2. Степени числа 2
Если все слагаемые в развернутой форме недесятичного числа представить в десятичной системе и вычислить полученное выражение по правилам десятичной арифметики, по получится число в десятичной системе, равное данному. Пример С1. Перевести число Решение. Над числом запишем степени основания двоичной системы, т.е. степени двойки, затем рассмотрим развернутую запись числа,
Перевод десятичных чисел в другие системы счисления Перевод целых чисел производят следующим образом: 1) Основание новой системы счисления выразить в десятичной системе счисления и все последующие действия производить в десятичной системе счисления; 2) последовательно выполнять деление данного числа и получаемых неполных частных на основание новой системы счисления до тех пор, пока не получим неполное частное, меньшее делителя; 3) полученные остатки, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления; 4) составить число в новой системе счисления, записывая его, начиная с последнего частного.
Пример С2. Перевести число Решение. Для обозначения цифр в записи числа используем символику:
Арифметические операции в двоичной и кратных Ей системах счисления. Арифметические операции в позиционных системах счисления производятся по единому алгоритму. Так, сложение двоичных чисел происходит по классическому алгоритму «столбиком» с переносом двойки в следующий ряд. Необходимо помнить о следующих правилах сложения и умножения чисел в двоичной системе счисления.
Важно обратить внимание на то, что при сложении двух единиц происходит переполнение разряда и производится перенос в старший разряд. Переполнение разряда наступает тогда, когда величина числа в нем становится равной или большей основания. Проверим, действительно ли 12+12=102: переведем слагаемые в десятеричную систему счисления. 12=110, поэтому 12+12=110+110=210=102. Пример С3. Найти сумму чисел Решение.
Проверим результат нашего сложения, для чего переведем слагаемые и сумму в десятичную систему счисления:
Как видим, действительно 85+55=140. <
Двоичная система, являющаяся основой всей компьютерной арифметики, тем не менее весьма громоздка и не удобна для использования человеком. Поэтому программисты пользуются двумя кратными двоичной системами счисления: восьмеричной и шестнадцатеричной. Приведем в качестве примера запись натуральных чисел от единицы до шестнадцати в четырех системах счисления. Для удобства перевода из двоичной в восьмеричную и шестнадцатеричную системы рассмотрим следующую таблицу:
Таблица 3. Перевод чисел из одной системы счисления в другую
Из этой таблицы видно, что в двоичной системе счисления запись числе второй восьмерки чисел (от 8 до 15) отличается от записи первой восьмерки (от 0 до 7) наличием единицы в четвертом (слева) разряде. На этом основан алгоритм перевода двоичных чисел в восьмеричные «по триадам». Для применения этого алгоритма надо разбить двоичное число на тройки цифр (естественно, отсчитывая справа по три цифры для целого числа и слева для дробного числа) и записать вместо каждой из троек восьмеричную цифру.
Пример С4. Перевести число Решение. Для решения необходимо разбить число справа (т.к. оно целое) на «триады». Если до крайней слева тройки не хватает цифр, то дописываем незначащие нули слева.
Для перевода чисел из восьмеричной системы в двоичную используется обратный алгоритм: (восьмеричные цифры заменяются на тройки двоичных цифр). Например, Для перевода чисел из двоичной системы в шестнадцатеричную используется алгоритм «по тетрадам». Строка двоичных цифр разбивается на четверки и вместо них записываются шестнадцатеричные цифры.
Пример С5. Перевести двоичное число 110111101011101111, 101 в шестнадцатеричную систему счисления. Решение. Разделим данное число на группы по четыре цифры, начиная справа для целой части числа и слева для дробной части числа. Если в крайней левой группе (для целой части) и в крайней правой(для дробной части) окажется меньше четырех цифр, то дополним их нулями.
Основы логики высказываний Популярное:
|
Последнее изменение этой страницы: 2017-03-09; Просмотров: 619; Нарушение авторского права страницы