Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Год — Нобелевская премия по экономике (совместно с Т. Купмансом «за вклад в теорию оптимального распределения ресурсов»).
С 1976 работал во ВНИИ системных исследований Госплана СССР и АН СССР.
Тьяллинг Купманс, Джордж Данциг, Леонид Канторович, 1975 год
Джордж Бернард Данциг (англ. George Bernard Dantzig; 8 ноября 1914 — 13 мая 2005) — математик, который разработал симплексный алгоритм (симплекс-метод) и считается «отцом линейного программирования» (наряду с советским математиком Л. В. Канторовичем).
Ему были присуждены: Национальная Медаль Науки (National Medal of Science) в 1975, Приз Джона фон Неймана (John von Neumann Theory Prize) в 1974. Он был членом Национальной Академии Наук (National Academy of Sciences), Национальной технической Академии (National Academy of Engineering), и американской Академии Искусств и Наук (American Academy of Arts and Sciences).
Он получил степень бакалавра по математике и физике в Университете Мэриленд (University of Maryland) в 1936, степень магистра математики в Университете Мичиган (University of Michigan) и доктора философии в Беркли (UC Berkeley) в 1946.
Отец Данцига, Тобиас Данциг, был российским (латвийским) математиком, который учился у Анри Пуанкаре (Henri Poincaré ) в Париже, затем эмигрировал в Соединенные Штаты.
На кондитерской фабрике «Алиса». Продолжение:
После решения задачи об оптимальном плане производства для родной кондитерской фабрики, юноша (сын владельца фабрики) испытал двойственное чувство. С одной стороны, прибыль, соответствующая найденному им производственному плану, почти на 6, 5 млн рублей больше, чем по плану пожилого инженера, т.е. он заработал 1 миллион 285 тысяч рублей. Это здорово!
С другой стороны, почему компьютер отказался от выпуска «Батончика», можно сказать концептуальной конфеты? Юноша был уверен, что «Золотой батончик» – один из лучших продуктов, который выпускает фабрика его отца. Если его не окажется на прилавках, может пострадать имидж фабрики. Ведь не только он сам, но и вся его тусовка очень любят эту конфету!
Кроме того, он вспомнил, что на занятиях по количественным методам в менеджменте, преподаватель все время твердил об анализе полученного оптимального решения на устойчивость: малые изменения величины запасов могут привести к радикальному изменению решения! А что, если каких-то запасов не хватит для его оптимального плана? Он не доберет прибыли! Может быть тогда более прибыльным станет иной план? Какой?
Задание 3.
Комментарии к отчету по устойчивости MS Excel
Переключитесь на лист книги Excel, содержащий задачу. Вызовите Поиск решения и заставьте его еще раз решить эту задачу. После нахождения оптимального решения выбрасывается окно “Результаты поиска решения”.
Прежде чем нажать на клавишу OK, отметьте тип отчета - «Устойчивость». Excel добавит в рабочую книгу новый лист «Отчет об устойчивости 1». Переключитесь на вновь созданный лист отчета.
Отчет Excel об устойчивости включает две таблицы: таблицу «Ячейки переменных» (сверху) и таблицу «Ограничения» (снизу).
Влияние изменений в коэффициентах целевой функции Таблица «Изменяемые ячейки».
1. Изменение коэффициентов целевой функции не изменяет оптимального плана (максимальное значение целевой функции при этом, конечно, меняется), пока они остаются в границах “Допустимое увеличение” и “Допустимое уменьшение” коэффициентов целевой функции.
2. При выходе значений коэффициентов за эти пределы решение скачком изменяется на другое решение, возможно отличающееся от прежнего очень сильно.
Если переменная Xj > 0 (продукт входит в оптимальный план), то имеется как верхний так и нижний предел для изменения соответствующего коэффициента целевой функции, кроме случая, когда на переменную наложено прямое ограничение: Xj < a или Xj > b.
Если же Xj = 0, то “Допустимое уменьшение” может быть как угодно велико - продукт все равно не войдет в оптимальный план. При этом верхний предел - “Допустимое увеличение”, показывает насколько нужно увеличить соответствующий целевой коэффициент, чтобы продукт вошел в оптимальный план (если цель – максимум и все наоборот, если речь идет об издержках и цель - минимум).
Величина противоположная этому увеличению (уменьшению) называется Приведенная (Нормированная) стоимость, и показывает, насколько нынешняя цена продукта ниже минимальной цены (или издержки выше максимальных), при которой продукт может войти в оптимальный план.
На кондитерской фабрике «Алиса». Популярное:
|
Последнее изменение этой страницы: 2017-03-10; Просмотров: 871; Нарушение авторского права страницы