Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Теория электрослабого взаимодействия
В 70-е гг. XX в. в естествознании произошло выдающееся событие: два фундаментальных взаимодействия из четырех физики объединили в одно. Картина фундаментальных взаимодействий несколько упростилась. Электромагнитное и слабое взаимодействия, казалось бы, весьма разные по своей природе, предстали как разновидности единого электрослабого взаимодействия. Теория электрослабого взаимодействия в окончательнбй форме была создана двумя независимо работавшими физиками — С. Вайнбергом и А. Саламом. Теория электрослабого взаимодействия решающим образом повлияла на дальнейшее развитие физики элементарных частиц в конце XX в. Главная идея в построении этой теории состояла в описании слабого взаимодействия на языке концепции калибровочного поля, в соответствии с которой ключом к пониманию природы взаимодействий служит симметрия. Одна из фундаментальных идей в физике второй половины XX в. — это убеждение, что все взаимодействия существуют лишь для того, чтобы поддерживать в природе некий набор абстрактных симметрий. Какое отношение имеет симметрия к фундаментальным взаимодействиям? Ведь, на первый взгляд, утверждение о существовании подобной взаимосвязи кажется весьма парадоксальным. Прежде всего о том, что понимается под симметрией. Принято считать, что предмет симметричен, если он остается неизменным после той или иной операции по его преобразованию. Так, сфера симметрична, потому что выглядит одинаково при повороте на любой угол относительно ее центра. Законы электричества симметричны относительно замены положительных зарядов отрицательными и наоборот. Таким образом, под симметрией понимается инвариантность системы относительно некой операции. Существуют разные типы симметрии: геометрические, зеркальные, негеометрические. Среди негеометрических есть так называемые калибровочные симметрии. Калибровочные симметрии носят абстрактный характер и органами чувств непосредственно не фиксируются. Они связаны с изменением отсчета уровня, масштаба или значения некоторой физической величины. Система обладает калибровочной симметрией, если ее природа остается неизменной при такого рода преобразовании. Так, например, в физике работа зависит от разности высот, а не от абсолютной высоты; напряжение — от разности потенциалов, а не от их абсолютных величин и др. Симметрии, на которых основан пересмотр понимания фундаментальных взаимодействий, именно такого рода. Калибровочные преобразования симметрии могут быть глобальными и локальными. Глобальные преобразования изменяют систему в целом, во всем ее пространственно-временном объеме; в физике это выражается в том, что во всех точках пространства-времени значения волновой функции подвергаются одному и тому же изменению. Локальными калибровочными преобразованиями называются преобразования, которые изменяются от точки к точке; иначе говоря, волновая функция в каждой точке характеризуется своей особой фазой, которой соответствует определенная частица. Глобальное калибровочное преобразование теоретически можно превратить в локальное калибровочное преобразование. Для их связи и поддержания симметрии в каждой точке пространства необходимы новые силовые поля — калибровочные. В природе существует ряд локальных калибровочных симметрий, и необходимо соответствующее число калибровочных полей для их компенсации. Так, силовые поля можно рассматривать как средство, с помощью которого в природе создаются присущие ей локальные калибровочные симметрии. Значение концепции калибровочной симметрии заключается в том, что благодаря ей теоретически моделируются все четыре фундаментальных взаимодействия, встречающиеся в природе. Все их можно рассматривать как калибровочные поля. Простейшей калибровочной симметрией обладает электромагнетизм. Иначе говоря, электромагнитное поле не просто определенный тип силового поля, существующего в природе, а проявление простейшей (совместимой с принципами специальной теории относительности) калибровочной симметрии, в которой калибровочные преобразования соответствуют изменениям потенциала от точки к точке. Учение об электромагнетизме складывалось столетия на основе кропотливых эмпирических исследований, но оказывается, что результаты этих исследований можно вывести чисто теоретически, основываясь на знании лишь двух симметрий — простейшей локальной калибровочной симметрии и так называемой симметрии Лоренца — Пуанкаре специальной теории относительности. Основываясь только на существовании этих двух симметрий, не проведя ни единого эксперимента по электричеству и магнетизму, можно построить уравнения Максвелла, вывести все законы электромагнетизма, доказать существование радиоволн, возможность создания динамо-машины и т.д. А применение идей локальной калибровочной инвариантности к преобразованиям Лоренца автоматически приводит к построению теории гравитации, сходной с ОТО. Для представления поля слабого взаимодействия как калибровочного прежде всего необходимо установить точную форму соответствующей калибровочной симметрии. Дело в том, что симметрия слабого взаимодействия гораздо сложнее, чем электромагнитного. Ведь и сам механизм слабого взаимодействия оказывается более сложным. Во-первых, при распаде нейтрона, например, в слабом взаимодействии участвуют частицы по крайней мере четырех различных типов (нейтрон, протон, электрон и нейтрино). Во-вторых, действие слабых сил приводит к изменению их природы (превращению одних частиц в другие за счет слабого взаимодействия). Напротив, электромагнитное взаимодействие не изменяет природы участвующих в нем частиц. Выяснилось, что для поддержания симметрии в описании слабого взаимодействия необходимы три новых силовых поля, в отличие от единственного электромагнитного поля. Было получено и квантовое описание этих трех полей: должны существовать три новых типа частиц — переносчиков взаимодействия, по одному для каждого поля. Все вместе они называются тяжелыми векторными бозонами со спином 1 и являются переносчиками слабого взаимодействия. Частицы W+ и W- являются переносчиками двух из трех связанных со слабым взаимодействием полей. Третье поле соответствует электрически нейтральной частице-переносчику, получившей название Zº -частицы. Существование Zº -частицы означает, что слабое взаимодействие может не сопровождаться переносом электрического заряда. В создании теории электрослабого взаимодействия ключевую роль сыграло понятие спонтанного нарушения симметрии: не всякое решение задачи обязано обладать всеми свойствами его исходного уровня. Так, частицы, совершенно разные при низких энергиях, при высоких энергиях могут оказаться на самом деле одной и той же частицей, но находящейся в разных состояниях. Таким образом, идеей спонтанного нарушения симметрии Вайнберг и Салам соединили электромагнетизм и слабое взаимодействие в единой теории калибровочного поля. В теории Вайнберга — Салама представлено всего четыре поля: электромагнитное и три поля, соответствующие слабым взаимодействиям. Кроме того, было введено постоянное на всем пространстве скалярное поле (так называемое поле Хиггcа), с которым частицы взаимодействуют по-разному, что и определяет различие их масс *. Первоначально W- и Z-кванты не имеют массы, но из-за нарушения симметрии некоторые частицы Хиггеа сливаются cW-и Z-частицами, наделяя их массой. В этой теории фотоны и тяжелые векторные бозоны (W± и Z°) имеют общее происхождение и тесно связаны друг с другом. * Кванты скалярного поля представляют собой новые массивные элементарные частицы с нулевым спином. Их называют хиггсовскими (по имени физика П. Хиггcа, предположившего их существование). Число таких хиггсовских бозонов может достигать нескольких десятков. На опыте такие бозоны пока не обнаружены. Более того, ряд физиков считают их существование необязательным, но совершенной теоретической модели без хиггсовских бозонов пока не найдено.
Почему же электромагнитное и слабое взаимодействия обладают столь непохожими свойствами? Теория Вайнберга — Салама объясняет эти различия нарушением симметрии. Если бы симметрия не нарушалась, то оба взаимодействия были бы сравнимы по величине. Нарушение симметрии влечет за собой резкое уменьшение слабого взаимодействия, поскольку оно непосредственно связано с массами W и Z-частиц. Можно сказать, что слабое взаимодействие столь мало потому, что W- и Z-частицы очень массивны. Лептоны редко сближаются на столь малые расстояния (r ~ 10-18 м), на которых становится возможным обмен тяжелыми векторными бозонами. Но при больших энергиях (более 100 ГэВ), когда частицы W и Z могут свободно рождаться, обмен W- и Z-бозонами осуществляется столь же легко, как и обмен фотонами (безмассовыми частицами), разница между фонтанами и бозонами стирается. В этих условиях должна существовать полная симметрия между электромагнитным и слабым взаимодействием — электрослабое взаимодействие. Наиболее убедительная экспериментальная проверка новой теории заключалась в подтверждении существования гипотетических W и Z-частиц. Их открытие в 1983 г. стало возможным только с созданием очень мощных ускорителей новейшего типа и означало торжество теории Вайнберга — Салама. Было окончательно доказано, что электромагнитное и слабое взаимодействия в действительности были просто двумя компонентами единого электрослабого взаимодействия. В 1979 г. Вайнбергу С., Саламу А., Глэшоу С. была присуждена Нобелевская премия за создание теории электрослабого взаимодействия.
Квантовая хромодинамика
Следующий шаг на пути познания фундаментальных взаимодействий — создание теории сильного взаимодействия. Для этого необходимо придать черты калибровочного поля сильному взаимодействию. Сильное взаимодействие можно представлять как результат обмена глюонами, который обеспечивает связь кварков (попарно или тройками) в адроны (см. 10.3.2). Замысел здесь состоит в следующем. Каждый кварк обладает аналогом электрического заряда, служащим источником глюонного поля. Его назвали цветом *. * Как и в случае с термином «кварк», термин «цвет» здесь выбран произвольно и никакого отношения к обычному цвету не имеет.
Если электромагнитное поле порождается зарядом только одного сорта, то более сложное глюонное поле создается тремя различными цветовыми зарядами. Каждый кварк «окрашен» в один из трех возможных цветов, которые (совершенно произвольно) назвали красным, зеленым и синим. И соответственно, антикварки бывают антикрасные, антизеленые и антисиние. На следующем этапе теория сильного взаимодействия развивалась по той же схеме, что и теория слабого взаимодействия. Требование локальной калибровочной симметрии (т.е. инвариантности относительно изменений цвета в каждой точке пространства) приводит к необходимости введения компенсирующих силовых полей. Всего требуется восемь новых компенсирующих силовых полей. Частицами — переносчиками этих полей являются глюоны, и, таким образом, из теории следует, что должно быть целых восемь различных типов глюонов. Как и фотон, глюоны имеют нулевую массу покоя и спин 1. Глюоны также имеют различные цвета, но не чистые, а смешанные (например, сине-антизеленый), т.е. глюоны состоят из «цвета» и «антицвета». Поэтому испускание или поглощение глюона сопровождается изменением цвета кварка, («игра цветов»). Так, например, красный кварк, теряя красно-антисиний глюон, превращается в синий кварк, а зеленый кварк, поглощая сине-антизеленый глюон, превращается в синий кварк. В протоне, например, три кварка постоянно обмениваются глюонами, изменяя свой цвет. Однако такие изменения носят не произвольный характер, а подчиняются жесткому правилу: в любой момент времени «суммарный» цвет трех кварков должен представлять собой белый свет, т.е. сумму «красный + зеленый + синий». Это распространяется и на мезоны, состоящие из пары кварк — антикварк. Поскольку антикварк характеризуется антицветом, такая комбинация заведомо бесцветна («белая»), например красный кварк в комбинации с антикрасным кварком образует бесцветный мезон. С точки зрения квантовой хромодинамики (квантовой теории цвета) сильное взаимодействие есть не что иное, как стремление поддерживать определенную абстрактную симметрию природы: сохранение белого цвета всех адронов при изменении цвета их составных частей *. Квантовая хромодинамика великолепно объясняет правила, которым подчиняются все комбинации кварков, взаимодействие глюонов между собой (глюон может распадаться на два глюона или два глюона слиться в один — поэтому и появляются нелинейные члены в уравнении глюонного поля), взаимодействие кварков и глюонов (кварки покрыты облаками глюонов и кварк-антикварковых пар), сложную структуру адрона, состоящего из «одетых» в облака кварков, и др. * Лептоны, фотоны и промежуточные бозоны (W- и Z-частицы) не несут света, а поэтому не участвуют в сильном взаимодействии.
Возможно, пока преждевременно оценивать квантовую хромодинамику как окончательную и завершенную теорию сильного взаимодействия, но экспериментальный статус ее достаточно прочен и достижения многообещающи. Популярное:
|
Последнее изменение этой страницы: 2017-03-11; Просмотров: 447; Нарушение авторского права страницы