Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ТЕОРЕТИЧЕСКИЕ АСПЕКТЫ ПОЛУЧЕНИЯ ЗНАНИЙ



ПРАКТИЧЕСКИЕ МЕТОДЫ ИЗВЛЕЧЕНИЯ ЗНАНИЙ

СТРУКТУРИРОВАНИЕ ЗНАНИЙ

 

Центральной проблемой при создании интеллектуальных информационных технологий является адекватное отображение знаний специалиста в памяти компьютера. Это привело к развитию нового направления в информатике – инженерии знаний, где определяется соотношение человеческого знания и его формализованного (информационного) отображения в ЭВМ. Инженерия знаний изучает и разрабатывает вопросы, связанные с получением знаний, их анализом и формализацией для дальнейшей реализации в интеллектуальной системе.

Цель главы – дать обзор основных теоретических аспектов инженерии знаний и познакомить с некоторыми практическими методами работы инженеров по знаниям.

ПОСЛЕ ИЗУЧЕНИЯ ГЛАВЫ ВЫ ДОЛЖНЫ ЗНАТЬ:

Подходы к получению знаний при разработке экспертных систем

Теоретические проблемы, возникающие при извлечении знаний

Особенности психологических и лингвистических факторов, которые необходимо учитывать инженеру по знаниям

Влияние философии познания на работу инженера по знаниям

Методы инженера по знаниям при работе с источником знаний

Методы извлечения знаний

Суть экспертных игр

Методы извлечения знаний из текстов

Структурирование полученных знаний

Формирование понятийной и функциональной структуры предметной области

Каким образом формализуются знания и формируется база знаний

ТЕОРЕТИЧЕСКИЕ АСПЕКТЫ ПОЛУЧЕНИЯ ЗНАНИЙ

 

Стратегии получения знаний

Психологический аспект

Лингвистический аспект

Гносеологический аспект

СТРАТЕГИИ ПОЛУЧЕНИЯ ЗНАНИИ

 

Существует несколько стратегий получения знаний. Наиболее распространенные:

приобретение;

извлечение;

формирование.

Под приобретением знаний понимается способ автоматизированного построения базы знаний посредством диалога эксперта и специальной программы (при этом структура знаний заранее закладывается в программу). Эта стратегия требует существенной предварительной проработки предметной области. Системы приобретения знаний действительно приобретают готовые фрагменты знаний в соответствии со структурами, заложенными разработчиками систем. Большинство этих инструментальных средств специально ориентировано на конкретные экспертные системы с жестко обозначенной предметной областью и моделью представления знаний, т.е. не являются универсальными. Например, система TEIRESIAS [18], ставшая прародительницей всех инструментариев для приобретения знаний, предназначена для пополнения базы знаний системы MYCIN или ее дочерних ветвей, построенных на " оболочке" EMYCIN [10] в области медицинской диагностики с использованием продукционной модели представления знаний.

Термин извлечение знаний касается непосредственного живого контакта инженера по знаниям и источника знаний. Авторы склонны использовать этот термин как более емкий и более точно выражающий смысл процедуры переноса компетентности эксперта через инженера по знаниям в базу знаний экспертной системы.

Термин формupование знаний традиционно закрепился за чрезвычайно перспективной и активно развивающейся областью инженерии знаний, которая занимается разработкой моделей, методов и алгоритмов анализа данных для получения знаний и обучения. Эта область включает индуктивные модели формирования гипотез на основе обучающих выборок, обучение по аналогии и другие методы.

Таким образом, можно выделить три стратегии проведения стадии получения знаний при разработке экспертных систем (рис. 17.1).

 

 

Рис. 17.1. Три стратегии получения знаний

 

На современном этапе разработки экспертных систем в нашей стране стратегия извлечения знаний, по-видимому, является наиболее актуальной, поскольку промышленных систем приобретения и формирования знаний на отечественном рынке программных средств практически нет.

Извлечение знаний – это процедура взаимодействия эксперта с источником знаний, в результате которой становятся явными процесс рассуждений специалистов при принятии решения и структура их представлений о предметной области.

 

В настоящее время большинство разработчиков экспертных систем отмечают, что процесс извлечения знаний остается самым " узким" местом при построении промышленных систем.

Процесс извлечения знаний – это длительная и трудоемкая процедура, в которой инженеру по знаниям, вооруженному специальными знаниями по когнитивной психологии [3], системному анализу, математической логике и пр., необходимо воссоздать модель предметной области, которой пользуются эксперты для принятия решения. Часто начинающие разработчики экспертных систем, желая избежать этой мучительной процедуры, задают вопрос: может ли эксперт сам извлечь из себя знания? По многим причинам это нежелательно.

Во-первых, большая часть знаний эксперта – это результат многочисленных наслоений, ступеней опыта. И часто зная, что из А следует В, эксперт не дает себе отчета, что цепочка его рассуждений была гораздо длиннее, например С ® D, D ® А, А ® В, или А ® Q, Q ® R, R ® B.

Во-вторых, как было известно еще древним (вспомним " Диалоги" Платона), мышление диалогично. И поэтому диалог инженера по знаниям и эксперта – наиболее естественная форма " раскручивания" лабиринтов памяти эксперта, в которых хранятся знания, частью носящие невербальный характер, т.е. выраженные не в форме слов, в форме наглядных образов, например. Именно в процессе объяснения инженеру по знаниям эксперт на эти размытые ассоциативные образы надевает четкие словесные ярлыки, т.е. вербализует знания.

В-третьих, эксперту гораздо труднее создать модель предметной области вследствие той глубины и необозримости информации, которой он обладает. Многочисленные причинно-следственные связи реальной предметной области образуют сложную систему, из которой выделить " скелет", или главную структуру, иногда доступнее аналитику, владеющему к тому же системной методологией: Любая модель – это упрощение, а упрощать легче с меньшим знанием деталей.

Чтобы разобраться в природе извлечения знаний, выделим три основных аспекта этой процедуры (рис. 17.2): психологический, лингвистический, гносеологический, которые подробно описаны в [4].

 

Рис. 17.2. Основные аспекты извлечения знаний

ПСИХОЛОГИЧЕСКИЙ АСПЕКТ


Поделиться:



Популярное:

  1. I ГЛАВА. НАУЧНО-ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ПРОЕКТИРОВАНИЯ МУЗЫКАЛЬНЫХ ШКОЛ
  2. I. Проверка рубежного уровня знаний по вопросам раздела.
  3. I. Теоретические основы использования палочек Кюизенера как средство математического развития дошкольников.
  4. I. Теоретические основы экономического воспитания детей старшего дошкольного возраста посредством сюжетно-ролевой игры
  5. III. Актуализация знаний. Проверка работы над проектом
  6. III. ВНЕШНЕПОЛИТИЧЕСКИЕ АСПЕКТЫ ИСТОРИИ ВЕЛИКОЙ ОТЕЧЕСТВЕННОЙ ВОЙНЫ
  7. III. Перечень вопросов для проведения проверки знаний кандидатов на получение свидетельства коммерческого пилота с внесением квалификационной отметки о виде воздушного судна - самолет
  8. VII. Перечень вопросов для проведения проверки знаний кандидатов на получение свидетельства линейного пилота с внесением квалификационной отметки о виде воздушного судна - вертолет
  9. А. Теоретические взгляды Я.А. Пономарева
  10. Актуализация знаний учащихся о творчестве А. С. Пушкина
  11. Анализ традиционных языков программирования и представления знаний.
  12. АНАЛИЗ УРОКА: ПСИХОЛОГИЧЕСКИЕ И ПЕДАГОГИЧЕСКИЕ АСПЕКТЫ


Последнее изменение этой страницы: 2017-03-11; Просмотров: 617; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.016 с.)
Главная | Случайная страница | Обратная связь