Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Иерархическая организация моторных систем



ДВИГАТЕЛЬНАЯ ФУНКЦИЯ ЦНС

 

Иерархическая организация моторных систем

 

При получении сенсорной информации из внешнего мира организм обычно отвечает на неё каким-либо действием. Необходимые для его осуществления моторные системы не только взаимодействуют с сенсорными, но и обнаруживают с ними сходство в функциональной организации. Сенсорные системы сначала дробят цельные явления окружающего мира на элементарные составляющие, чтобы потом построить из них внутреннюю картину внешнего окружения. Моторные системы сначала строят внутренний образ предстоящей деятельности, а затем претворяют созданный план в действие, используя для этого скелетные мышцы.

Полученные от сенсорных систем сведения об интенсивности раздражителя используются моторными системами для кодирования информации о силе сокращения мышц. Два других важных сенсорных признака - локализацию и длительность действия раздражителя можно сопоставить с такими важными характеристиками моторной деятельности, как точность и скорость движений.

Подобно сенсорным системам моторные тоже организованы иерархически (Рис. 10.1). Непосредственными распорядителями активности мышц являются мотонейроны спинного мозга и клетки двигательных ядер некоторых черепно-мозговых нервов. Они могут активироваться сенсорными нейронами (при осуществлении моносинаптических рефлексов), но в большинстве случаев активность мотонейронов определяют ближайшие возбуждающие и тормозные интернейроны.

Функциональное объединение мотонейронов с соседними интернейронами, предназначенное для управления определённой частью тела, представляет собой низшую моторную систему или локальный моторный аппарат. Такие аппараты управляют разными частями тела: рукой, ногой, глазом. В каждом отдельном действии участвуют разные мышцы, причём одни из них сокращаются, а другие в то же время расслабляются, чтобы в результате произошло, например, сгибание руки или разгибание ноги.

В любой низшей моторной системе, как в картотеке, содержатся программы всех возможных движений управляемой части тела, поэтому задача командных двигательных центров состоит в том, чтобы выбрать из этой картотеки нужную программу. В самом простом варианте, когда движение совершается по запрограммированному механизму спинального рефлекса, этот выбор осуществляет сам локальный моторный аппарат, в зависимости от характера сенсорной информации. Он может, например, прервать сгибание берущих какой-нибудь предмет пальцев, если этот предмет окажется сильно нагретым. Выбор конкретной двигательной программы, как правило, определяется наиболее значимой сенсорной информацией и чаще всего он состоит в предпочтении наиболее эффективных действий.

Командные двигательные центры расположены в стволе мозга и моторных областях коры, которые связаны с локальными моторными аппаратами нисходящими путями. Аксоны, образующие эти пути оканчиваются либо прямо на мотонейронах спинного мозга, либо на соседних с ними интернейронах, причём последнее встречается гораздо чаще. Существует несколько параллельных нисходящих путей, которые участвуют в решении разных функциональных задач. Так, например, намеренное движение руки к находящемуся на уровне головы предмету может напоминать по своей траектории нечаянный взмах при попытке сохранить равновесие. При внешнем сходстве самих движений, осуществляющие их механизмы оказываются разными, так как в них участвуют разные двигательные центры и нисходящие пути.

Любой двигательный центр организован соматотопически. Это значит, что его клетки специализируются на управлении только определёнными мышцами. Их аксоны входят в состав проводящего пути, связанного с другими нейронами, которые имеют отношение к тем же самым мышцам. Так, например, нейроны моторной коры, вызывающие сгибание руки, контактируют посредством своих аксонов с управляющими именно этим движением нейронами стволовых двигательных центров и спинного мозга.

Каждый двигательный центр, на каком бы уровне он не находился, получает собственную квоту сенсорной информации. Нейроны локальных моторных аппаратов пользуются сенсорным потоком от рецепторов мышц, сухожилий и суставов, от поверхностных и глубоких рецепторов кожи и от интерорецепторов внутренних органов. Двигательные центры ствола, наряду с этой информацией, используют в своей деятельности ещё и сигналы от вестибулярных, зрительных и слуховых рецепторов. Моторная кора получает сумму необходимых сведений от сенсорной коры, а кроме того, она зависит от ассоциативных областей, уже интегрировавших все виды сенсорной информации. Непрерывное поступление сенсорной информации на всех уровнях организации моторных систем своевременно обеспечивает каждую двигательную структуру оперативной обратной связью, т.е. сведениями о том, как выполняется то или иное движение, достигается или нет намеченная цель: в соответствии с этими данными выполняемые движения постоянно корректируются.

Иерархия двигательных центров проявляется в том, что высшие из них могут отменить команды низших или поручить им выполнить собственную команду. Так, например, стволовые двигательные центры способны подчинять себе активность низших моторных систем спинного мозга, но сами бывают вынуждены подчиняться моторным областям коры. Спинальные двигательные центры могут обеспечить рефлекторную регуляцию длины и напряжения мышц и некоторые простейшие рефлексы. Двигательные структуры ствола контролируют, как осуществляются эти функции, а кроме того распределяют мышечный тонус таким образом, чтобы было можно выбирать позу, необходимую для сидения, стояния или перехода к какому-либо движению. Вторичная и первичная моторная кора создают конкретную программу движений, т.е. выбирают из множества существующих вариантов наиболее подходящие сочетания. Ассоциативная кора замышляет общий план действий. Благодаря многочисленным обратным связям между разными иерархическими уровнями они обнаруживают не только субординацию, но одновременно относятся друг к другу как партнёры, согласованно решающие общую задачу.

И ещё две анатомические структуры мозга играют важную роль в формировании движений и контроле за их выполнением: мозжечок и базальные ганглии. Они не имеют прямого выхода к мотонейронам и поэтому их трудно отнести к какому-то определённому иерархическому уровню. Мозжечок и базальные ганглии взаимодействуют с несколькими уровнями организации моторной системы и координируют их активность.

 

Планирование будущих действий и вторичные моторные области

 

Планировать предстоящие действия начинает дорсолатеральная префронтальная ассоциативная кора на основе информации, поступающей, в первую очередь, от заднетеменных областей, с которыми её связывает множество нейронных путей (Рис. 10.5). Полученная информация содержит карту находящихся в поле зрения предметов, эту карту префронтальная кора включает в свою рабочую память. Эксперименты на обезьянах, у которых повреждали префронтальную область коры, показали нарушенную способность узнавать позицию необходимых для деятельности объектов и серьёзное ухудшение рабочей памяти. Так, например, на глазах обезьяны накрывали орех одним из трёх перевёрнутых непрозрачных сосудов, а затем всего лишь на несколько секунд загораживали все эти предметы непрозрачной ширмой. Если нормальные обезьяны после открытия ширмы сразу же брали сосуд, под которым находился орех, то животные с повреждением префронтальной коры, начинали беспорядочно перевёртывать сосуды в поисках ореха, как будто не видели, где он был спрятан.

Выходная активность префронтальной ассоциативной коры адресована премоторным или вторичным моторным областям, которые создают конкретный план предстоящих действий и непосредственно готовят моторные системы к движению. Ко вторичным двигательным областям относятся премоторная кора и добавочный моторный ареал (поле 6), причём обе эти области организованы соматотопически. Впервые они появляются у приматов и совершенствуются в процессе дальнейшей эволюции: их относительная величина у человека примерно в шесть раз больше, чем у макаки. Премоторная кора находится непосредственно перед первичной моторной корой, а добавочный моторный ареал - на верхней стороне лобных долей у медиальных поверхностей продольной борозды. Недавно были открыты ещё две области вторичной моторной коры, расположенные в поясных извилинах, вентральней от добавочных ареалов. Выходная активность нейронов вторичной моторной коры направлена к первичной моторной коре и к подкорковым структурам, кроме того некоторые аксоны её нейронов входят в состав волокон кортикоспинального пути, спускающегося в спинной мозг.

Премоторная область получает переработанную сенсорную информацию от задне-теменных областей; она содержит, прежде всего, сведения о комплексе зрительных и соматосенсорных ощущений. Выходы из премоторной области, направленные к стволу, включаются в состав медиального пути, в основном ретикулоспинального тракта. С этим обстоятельством связана главная задача премоторной области коры: контролировать мышцы туловища и проксимальных отделов конечностей. Эти мышцы особенно важны в начальной фазе выпрямления тела или движения руки к намеченной цели.

В отличие от этого, добавочный моторный ареал программирует последовательность движений, которые выполняются билатерально: при повреждении этой области коры у обезьян отдельные движения могут выполняться правильно, но координировать их в общем потоке действий животные уже не могут так, как прежде, и в особенности в тех случаях, когда надо действовать обеими руками. Добавочная кора получает информацию главным образом от соматосенсорной коры, а выход из неё происходит двумя способами: для проксимальных мышц конечностей двигательные команды поступают непосредственно в спинной мозг, а для дистальных мышц - опосредованно через первичную моторную кору.

Сравнительно недавно участие разных областей моторной коры в организации движения у человека было исследовано в зависимости от интенсивности кровотока в этих областях: известно, что с повышением активности ЦНС кровоток усиливается. Для оценки кровотока в сонную артерию вводили помеченный короткоживущим радиоизотопом ксенон (Roland P. E., 1993): распределение этого инертного газа в крови зависит только от интенсивности кровотока. Испытуемые выполняли серию стандартных движений пальцами (при этом активными оказались префронтальная область, добавочный моторный ареал, область руки в первичной моторной коре и в соматосенсорной коре), затем не двигались, но представляли себе эти же движения (активен добавочный моторный ареал), затем делали несколько энергичных взмахов одним пальцем (активны области руки первичной моторной и сенсорной коры) и, наконец, при закрытых глазах по команде изменяли положение пальца в ячейках проволочной решётки (" два поля направо", " одно поле вперёд" и т.п.) - при этом тесте повышалась активность кровотока задне-теменной и префронтальной областей, добавочного моторного ареала, премоторной коры, первичной моторной и сенсорной коры.

На основании сопоставления характера кровотока при выполнении этих опытов, а также в сравнении с кровотоком в состоянии покоя и при закрытых глазах были сделаны следующие выводы об участии различных областей коры в организации движений. Задне-теменные области обеспечивают сенсорной информацией префронтальную и вторичную моторную кору. Добавочный моторный ареал участвует в создании модели двигательной программы и её исполнении. Премоторная кора модифицирует созданную программу на основе поступающей сенсорной информации. Первичная моторная кора обеспечивает простые движения, причём даже без участия ассоциативной или вторичной коры. Эти выводы в общем совпадают с представлениями о роли разных областей коры в движении, сложившимися прежде на основе многолетних исследований двигательного поведения обезьян, изменённого в результате повреждений различных регионов коры.

 

Резюме

Контролирующие моторные действия структуры мозга организованы иерархически, на каждом иерархическом уровне реализуются собственные двигательные программы, разные иерархические уровни связаны параллельными путями друг с другом, каждый уровень соматотопически организован и решает собственные функциональные задачи. Двигательная активность постоянно согласуется с сенсорной информацией, обеспечивающей моторные центры разных уровней сведениями о ходе выполнения движений. В формировании произвольных движений участвуют ассоциативные и моторные области коры, мозжечок и базальные ганглии. Взаимодействие этих структур обеспечивает сложная сеть проводящих путей, в которой используются как возбуждающие, так и тормозные нейромедиаторы.

 

Вопросы для самоконтроля

 

145. Чем образован локальный моторный аппарат?

А. Совокупностью колонок первичной моторной коры; Б. Совокупностью колонок вторичной моторной коры; В. Совокупностью двигательных ядер ствола мозга; Г. Совокупностью интернейронов и мотонейронов спинного мозга; Д. Мотонейроном и иннервируемыми им волокнами мышцы.

146. Какой вид сенсорной информации является важнейшим для рефлекторного сохранения вертикальной позы?

А. Зрительная; Б. Слуховая; В. Вестибулярная; Г. От проприоцепторов верхних конечностей; Д. От рецепторов Гольджи нижних конечностей.

147. В какой структуре мозга расположены центры двигательных программ, обеспечивающих ориентировочные и сторожевые рефлексы?

А. Премоторная область; Б. Первичная моторная кора; В. Мозжечок; Г. Ствол мозга; Д. Спинной мозг.

148. Где сосредоточены мотонейроны, иннервирующие мышцы туловища и проксимальных отделов конечностей?

А. Латеральные области передних рогов спинного мозга; Б. Медиальные области передних рогов спинного мозга; В. Латеральные области задних рогов спинного мозга; Г. Медиальные области задних рогов спинного мозга; Д. Дорсальная часть спинного мозга.

149. Какой путь используется для управления дистальными мышцами конечностей?

А. Руброспинальный; Б. Вестибулоспинальный; В. Ретикулоспинальный; Г. Тектоспинальный; Д. Медиальный.

150. Повреждение какого нисходящего пути приводит к утрате способности совершать независимые движения разных пальцев?

А. Вестибулоспинального; Б. Дорсолатерального; В. Ретикулоспинального; Г. Тектоспинального; Д. Медиального.

151. Какова функция премоторной области коры?

А. Формирование плана предстоящих действий; Б. Контроль мышц туловища и проксимальных отделов конечностей при осуществлении произвольных действий; В. Координация совместных действий рук; Г. Координация точных движений пальцев; Д. Координация отдельных действий в общем потоке движений.

152. В какой области коры происходит сопоставление тактильной и проприоцептивной информации, а затем координируются действия пальцев руки, ощупывающей незнакомый предмет?

А. Префронтальная; Б. Добавочный моторный ареал; В. Премоторная; Г. Первичная моторная кора; Д. Вторичная моторная кора.

153. В какой области коры больше всего активируется деятельность нейронов (по признаку увеличения кровотока) во время мысленного представления движений?

А. Префронтальная; Б. Добавочный моторный ареал; В. Первичная моторная кора; Г. Первичная моторная и сенсорная кора; Д. Префронтальная, добавочный моторный ареал, первичная моторная и сенсорная кора.

154. Какого рода информация прежде всего используется при деятельности латеральной области мозжечка (цереброцеребеллум)?

А. О планировании движения; Б. О положении головы; В. О движении глаз; Г. О сохранении равновесия; Д. О совершаемом движении.

155. Какие нейроны мозжечка являются возбуждающими?

А. Клетки Пуркинье; Б. Нейроны Гольджи; В. Корзинчатые; Г. Звёздчатые; Д. Зернистые.

156. Аксоны каких клеток осуществляют эфферентный выход из коры мозжечка?

А. Клетки Пуркинье; Б. Нейроны Гольджи; В. Зернистые; Г. Звёздчатые; Д. Корзинчатые.

157. Какой вид деятельности не требует участия мозжечка?

А. Инициация движений; Б. Контроль правильности начинающихся движений; В. Планирование движений; Г. Согласование противодействующих мышц при движении; Д. Контроль за совпадением замысла и исполнения движения.

158. Что из указанного ниже не характерно для изолированных повреждений вестибулоцеребеллума и спиноцеребеллума?

А. Шаткая походка; Б. Неустойчивость в вертикальном положении; В. Скандированная речь; Г. Атаксия; Д. Вынужденное запрокидывание головы.

159. Что из указанного ниже не принадлежит к системе базальных ганглиев?

А. Хвостатое ядро; Б. Вестибулярное ядро; В. Скорлупа; Г. Субталамическое ядро; Д. Бледный шар.

160. В какую из указанных структур поступает афферентная информация от моторных и ассоциативных областей коры, предназначенная для базальных ганглиев?

А. Чёрная субстанция; Б. Латеральная область бледного шара; В. Медиальная область бледного шара; Г. Полосатое тело; Д. Субталамическое ядро.

161. Деятельность базальных ганглиев обеспечивается циркуляцией возбуждения по маршруту: ассоциативная и моторная кора ® полосатое тело ® бледный шар ®...? ® моторная кора. Укажите пропущенное звено.

А. Чёрная субстанция; Б. Хвостатое ядро; В. Субталамическое ядро; Г. Таламус; Д. Ассоциативная кора.

162. Какой медиатор используют нейроны дорсальной части чёрной субстанции?

А. ГАМК; Б. Ацетилхолин; В. Дофамин; Г. Энкефалин; Д. Субстанция Р.

163. У пожилого мужчины наблюдается скованность мышц, бедная мимика, у него отсутствуют вспомогательные движения при ходьбе. Какая структура скорее всего повреждена у этого человека?

А. Моторная кора; Б. Мозжечок; В. Хвостатое ядро; Г. Скорлупа; Д. Чёрная субстанция.

164. После перенесённого энцефалита у семнадцатилетней девушки появились непроизвольные порывистые движения головы и некоторых мимических мышц. При эмоциональном возбуждении эти явления усиливаются. Поражение какой структуры мозга может привести к таким нарушениям?

А. Мозжечок; Б. Моторная кора; В. Чёрная субстанция; Г. Хвостатое ядро Д. Ствол мозга.

 

ДВИГАТЕЛЬНАЯ ФУНКЦИЯ ЦНС

 

Иерархическая организация моторных систем

 

При получении сенсорной информации из внешнего мира организм обычно отвечает на неё каким-либо действием. Необходимые для его осуществления моторные системы не только взаимодействуют с сенсорными, но и обнаруживают с ними сходство в функциональной организации. Сенсорные системы сначала дробят цельные явления окружающего мира на элементарные составляющие, чтобы потом построить из них внутреннюю картину внешнего окружения. Моторные системы сначала строят внутренний образ предстоящей деятельности, а затем претворяют созданный план в действие, используя для этого скелетные мышцы.

Полученные от сенсорных систем сведения об интенсивности раздражителя используются моторными системами для кодирования информации о силе сокращения мышц. Два других важных сенсорных признака - локализацию и длительность действия раздражителя можно сопоставить с такими важными характеристиками моторной деятельности, как точность и скорость движений.

Подобно сенсорным системам моторные тоже организованы иерархически (Рис. 10.1). Непосредственными распорядителями активности мышц являются мотонейроны спинного мозга и клетки двигательных ядер некоторых черепно-мозговых нервов. Они могут активироваться сенсорными нейронами (при осуществлении моносинаптических рефлексов), но в большинстве случаев активность мотонейронов определяют ближайшие возбуждающие и тормозные интернейроны.

Функциональное объединение мотонейронов с соседними интернейронами, предназначенное для управления определённой частью тела, представляет собой низшую моторную систему или локальный моторный аппарат. Такие аппараты управляют разными частями тела: рукой, ногой, глазом. В каждом отдельном действии участвуют разные мышцы, причём одни из них сокращаются, а другие в то же время расслабляются, чтобы в результате произошло, например, сгибание руки или разгибание ноги.

В любой низшей моторной системе, как в картотеке, содержатся программы всех возможных движений управляемой части тела, поэтому задача командных двигательных центров состоит в том, чтобы выбрать из этой картотеки нужную программу. В самом простом варианте, когда движение совершается по запрограммированному механизму спинального рефлекса, этот выбор осуществляет сам локальный моторный аппарат, в зависимости от характера сенсорной информации. Он может, например, прервать сгибание берущих какой-нибудь предмет пальцев, если этот предмет окажется сильно нагретым. Выбор конкретной двигательной программы, как правило, определяется наиболее значимой сенсорной информацией и чаще всего он состоит в предпочтении наиболее эффективных действий.

Командные двигательные центры расположены в стволе мозга и моторных областях коры, которые связаны с локальными моторными аппаратами нисходящими путями. Аксоны, образующие эти пути оканчиваются либо прямо на мотонейронах спинного мозга, либо на соседних с ними интернейронах, причём последнее встречается гораздо чаще. Существует несколько параллельных нисходящих путей, которые участвуют в решении разных функциональных задач. Так, например, намеренное движение руки к находящемуся на уровне головы предмету может напоминать по своей траектории нечаянный взмах при попытке сохранить равновесие. При внешнем сходстве самих движений, осуществляющие их механизмы оказываются разными, так как в них участвуют разные двигательные центры и нисходящие пути.

Любой двигательный центр организован соматотопически. Это значит, что его клетки специализируются на управлении только определёнными мышцами. Их аксоны входят в состав проводящего пути, связанного с другими нейронами, которые имеют отношение к тем же самым мышцам. Так, например, нейроны моторной коры, вызывающие сгибание руки, контактируют посредством своих аксонов с управляющими именно этим движением нейронами стволовых двигательных центров и спинного мозга.

Каждый двигательный центр, на каком бы уровне он не находился, получает собственную квоту сенсорной информации. Нейроны локальных моторных аппаратов пользуются сенсорным потоком от рецепторов мышц, сухожилий и суставов, от поверхностных и глубоких рецепторов кожи и от интерорецепторов внутренних органов. Двигательные центры ствола, наряду с этой информацией, используют в своей деятельности ещё и сигналы от вестибулярных, зрительных и слуховых рецепторов. Моторная кора получает сумму необходимых сведений от сенсорной коры, а кроме того, она зависит от ассоциативных областей, уже интегрировавших все виды сенсорной информации. Непрерывное поступление сенсорной информации на всех уровнях организации моторных систем своевременно обеспечивает каждую двигательную структуру оперативной обратной связью, т.е. сведениями о том, как выполняется то или иное движение, достигается или нет намеченная цель: в соответствии с этими данными выполняемые движения постоянно корректируются.

Иерархия двигательных центров проявляется в том, что высшие из них могут отменить команды низших или поручить им выполнить собственную команду. Так, например, стволовые двигательные центры способны подчинять себе активность низших моторных систем спинного мозга, но сами бывают вынуждены подчиняться моторным областям коры. Спинальные двигательные центры могут обеспечить рефлекторную регуляцию длины и напряжения мышц и некоторые простейшие рефлексы. Двигательные структуры ствола контролируют, как осуществляются эти функции, а кроме того распределяют мышечный тонус таким образом, чтобы было можно выбирать позу, необходимую для сидения, стояния или перехода к какому-либо движению. Вторичная и первичная моторная кора создают конкретную программу движений, т.е. выбирают из множества существующих вариантов наиболее подходящие сочетания. Ассоциативная кора замышляет общий план действий. Благодаря многочисленным обратным связям между разными иерархическими уровнями они обнаруживают не только субординацию, но одновременно относятся друг к другу как партнёры, согласованно решающие общую задачу.

И ещё две анатомические структуры мозга играют важную роль в формировании движений и контроле за их выполнением: мозжечок и базальные ганглии. Они не имеют прямого выхода к мотонейронам и поэтому их трудно отнести к какому-то определённому иерархическому уровню. Мозжечок и базальные ганглии взаимодействуют с несколькими уровнями организации моторной системы и координируют их активность.

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2017-03-11; Просмотров: 834; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.037 с.)
Главная | Случайная страница | Обратная связь