Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Кинетическая энергия вращающегося твердого тела.



1. Рассмотрим вращение тела вокруг неподвижной оси Z. Разобьем все тело на множество элементарных масс mi. Линейная скорость элементарной массы mi – vi = w·Ri, где Ri – расстояние массы mi от оси вращения. Следовательно, кинетическая энергия i-ой элементарной массы будет равна . Полная кинетическая энергия тела: , здесь – момент инерции тела относительно оси вращения.

Таким образом, кинетическая энергия тела, вращающегося относительно неподвижной оси равна:

(4.5)

2. Пусть теперь тело вращается относительно некоторой оси, а сама ось перемещается поступательно, оставаясь параллельной самой себе.

НАПРИМЕР: Катящийся без скольжения шар совершает вращательное движение, а центр тяжести его, через который проходит ось вращения (точка «О») перемещается поступательно (рис.4.17).

Скорость i-той элементарной массы тела равна , где – скорость некоторой точки «О» тела; – радиус-вектор, определяющий положение элементарной массы по отношению к точке «О».

Кинетическая энергия элементарной массы равна:

.

ЗАМЕЧАНИЕ: векторное произведение совпадает по направлению с вектором и имеет модуль, равный (рис.4.18).

Учтя это замечание, можно записать, что , где – расстояние массы от оси вращения. Во втором слагаемом сделаем циклическую перестановку сомножителей, после этого получим

.

Чтобы получить полную кинетическую энергию тела, просуммируем это выражение по всем элементарным массам, вынося постоянные множители за знак суммы. Получим

.

Сумма элементарных масс есть масса тела «m». Выражение равно произведению массы тела на радиус-вектор центра инерции тела (по определению центра инерции). Наконец, – момент инерции тела относительно оси, проходящей через точку «О». Поэтому можно записать

.

Если в качестве точки «O» взять центр инерции тела «С», радиус-вектор будет равен нулю и второе слагаемое исчезнет. Тогда, обозначив через – скорость центра инерции, а через – момент инерции тела относительно оси, проходящей через точку «С», получим:

(4.6)

Таким образом, кинетическая энергия тела при плоском движении слагается из энергии поступательного движения со скоростью, равной скорости центра инерции, и энергии вращения вокруг оси, проходящей через центр инерции тела.

Работа внешних сил при вращательном движении твердого тела.

Найдем работу, которую совершают силы при вращении тела вокруг неподвижной оси Z.

Пусть на массу действуют внутренняя сила и внешняя сила (результирующая сила лежит в плоскости, перпендикулярной оси вращения) (рис. 4.19). Эти силы совершают за время dt работу:

.

Осуществив в смешанных произведениях векторов циклическую перестановку сомножителей, находим:

,

где , – соответственно, моменты внутренней и внешней сил относительно точки «О».

Просуммировав по всем элементарным массам, получим элементарную работу, совершаемую над телом за время dt:

.

Сумма моментов внутренних сил равна нулю. Тогда, обозначив суммарный момент внешних сил через , придем к выражению:

.

Известно, что скалярным произведением двух векторов называется скаляр, равный произведению модуля одного из перемножаемых векторов на проекцию второго на направление первого, учтя, что , (направления оси Z и совпадают), получим

,

но w·dt=dj, т.е. угол, на который поворачивается тело за время dt. Поэтому

.

Знак работы зависит от знака Mz, т.е. от знака проекции вектора на направление вектора .

Итак, при вращении тела внутренние силы работы не совершают, а работа внешних сил определяется формулой .

Работа за конечный промежуток времени находится путем интегрирования

.

Если проекция результирующего момента внешних сил на направление остается постоянной, то ее можно вынести за знак интеграла:

, т.е. .

Т.е. работа внешней силы при вращательном движении тела равна произведению проекции момента внешней силы на направление и угол поворота.

С другой стороны работа внешней силы, действующей на тело идет на приращение кинетической энергии тела (или равна изменению кинетической энергии вращающегося тела). Покажем это:

и тогда

;

Следовательно,

. (4.7)

Самостоятельно:

Упругие силы;

Закон Гука.

ЛЕКЦИЯ 7

Гидродинамика

Линии и трубки тока.

Гидродинамика изучает движение жидкостей, однако ее законы примени- мы и к движению газов. При стационарном течении жидкости скорость ее частиц в каждой точке пространства есть величина, независимая от времени и являющаяся функцией координат. При стационарном течении траектории частиц жидкости образуют линию тока. Совокупность линий тока образует трубку тока (рис. 5.1). Будем считать жидкость несжимаемой, тогда объем жидкости, протекающей через сечения S1 и S2, будет одинаков. За секунду через эти сечения пройдет объем жидкости, равный

, (5.1)

где и - скорости жидкости в сечениях S1 и S2, а вектора и определяются как и , где и - нормали к сечениям S1 и S2. Уравнение (5.1) называют уравнением неразрывности струи. Из него следует, что скорость жидкости обратно пропорциональна сечению трубки тока.

Уравнение Бернулли.

Будем рассматривать идеальную несжимаемую жидкость, в которой внутреннее трение (вязкость) отсутствует. Выделим в стационарно текущей жидкости тонкую трубку тока (рис. 5.2) с сечениями S1 и S2, перпендикулярными к линиям тока. В сечении 1 за малое время t частицы сместятся на расстояние l1, а в сечении 2 - на расстояние l2. Через оба сечения за время t пройдут одинаковые малые объемы жидкости V = V1 = V2 и перенесут массу жидкости m=rV, где r - плотность жидкости. В целом изменение механической энергии всей жидкости в трубке тока между сечениями S1 и S2 , произошедшее за время t, можно заменить изменением энергии объема V, произошедшим при его перемещении от сечения 1 до сечения 2. При таком движении изменится кинетическая и потенциальная энергия этого объема, и полное изменение его энергии

, (5.2)

где v1 и v2 - скорости частичек жидкости в сечениях S1 и S2 соответственно; g - ускорение земного притяжения; h1 и h2 - высоты центра сечений.

В идеальной жидкости потери на трение отсутствуют, поэтому приращение энергии DE должно быть равно работе, совершаемой силами давления над выделенным объемом. При отсутствии сил трения эта работа:

. (5.3)

Приравнивая правые части равенств (5.2) и (5.3) и перенося члены с одинаковыми индексами в одну часть равенства, получим

. (5.4)

Сечения трубки S1 и S2 были взяты произвольно, поэтому можно утверждать, что в любом сечении трубки тока справедливо выражение

. (5.5)

Уравнение (5.5) называется уравнением Бернулли. Для горизонтальной линии тока h = const, и равенство (5.4) приобретает вид

r /2 + p1 = r· /2 + p2, (5.6)

т.е. давление оказывается меньшим в тех точках, где скорость больше.

Силы внутреннего трения.

Реальной жидкости присуща вязкость, которая проявляется в том, что любое движение жидкости и газа самопроизвольно прекращается при отсутствии причин, вызвавших его. Рассмотрим опыт, в котором слой жидкости расположен над неподвижной поверхностью, а сверху его перемещается со скоростью , плавающая на ней пластина с поверхностью S (рис. 5.3). Опыт показывает, что для перемещения пластины с постоянной скоростью необходимо действовать на нее с силой . Так как пластина не получает ускорения, значит, действие этой силы уравновешивается другой, равной ей по величине и противоположно направленной силой, которая является силой трения . Ньютон показал, что сила трения

, (5.7)

где d - толщина слоя жидкости, h - коэффициент вязкости или коэффициент трения жидкости, знак минус учитывает различное направление векторов Fтр и v o. Если исследовать скорость частиц жидкости в разных местах слоя, то оказывается, что она изменяется по линейному закону (рис. 5.3):

v(z) = = (v0/d)·z.

Дифференцируя это равенство, получим dv/dz = v0/d. С учетом этого

 
формула (5.7) примет вид

Fтр= - h(dv/dz)S, (5.8)

где h - коэффициент динамической вязкости. Величина dv/dz называется градиентом скорости. Она показывает, как быстро изменяется скорость в направлении оси z. При dv/dz = const градиент скорости численно равен изменению скорости v при изменении z на единицу. Положим численно в формуле (5.8) dv/dz = -1 и S = 1, получим h = F . Отсюда следует физический смысл h: коэффициент вязкости численно равен силе, которая действует на слой жидкости единичной площади при градиенте скорости, равном единице. Единица вязкости в СИ называется паскаль-секундой (обозначается Па с). В системе СГС единицей вязкости является 1 пуаз (П), причем 1 Па с = 10П.


Поделиться:



Популярное:

  1. VI. СЕКСУАЛЬНАЯ ЭНЕРГИЯ. ЦЕНТРЫ НАСЫЩЕНИЯ. ЧТО ЖЕ ЭТО ТАКОЕ, «СЕКСУАЛЬНАЯ РЕВОЛЮЦИЯ»
  2. VI. Теплоемкость и внутренняя энергия газа
  3. Аккумулированная энергия (в веществе)
  4. Биологическая энергия является атмосферной (космической) энергией оргона.
  5. Божественная энергия течет через вас, а не из вас
  6. Внутренняя энергия. Работа в термодинамике. Количество теплоты.
  7. Внутренняя энергия. Энтальпия. Теплота и работа – две формы передачи энергии.
  8. Вопрос 5. Какой смысл заключён в словах «чувствительность»; «сознание», или «осознанность»; «энергия», или «свет»?
  9. Вращательное движение твердого тела.
  10. Все сущее имеет эти три слоя. Глубочайшим слоем является свидетельствующее сознание. Посредине лежит жизненная энергия, и лишь на поверхности - материя, материальное тело.
  11. Вся энергия перешла на другой уровень, на другую плоскость существования. Грязь стала лотосом, но она все еще здесь. Грязь неотделима от лотоса; она была преобразована.
  12. ГЛАВА ЧЕТВЁРТАЯ ЭНЕРГИЯ И ПОМОЩНИКИ


Последнее изменение этой страницы: 2017-03-11; Просмотров: 2587; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.023 с.)
Главная | Случайная страница | Обратная связь