Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
СУЩНОСТЬ ПРОБЛЕМ САМООРГАНИЗАЦИИ В СВЕТЕ СОВРЕМЕННОЙ НАУКИСтр 1 из 26Следующая ⇒
Со времени открытия второго закона термодинамики встал вопрос о том, как можно согласовать вывод о возрастании во времени энтропии (неопределенности, хаоса) в замкнутых системах с процессами самоорганизации в живой и неживой природе, происходящими в открытых системах. Долгое время казалось, что существует противоречие между выводами второго закона термодинамики и эволюционной теории Ч. Дарвина, согласно которой в живой природе благодаря принципу отбора непрерывно происходит процесс самоорганизации. Связь проблем самоорганизации материи с кибернетикой Разработка представлений о самоорганизации материи как о содержании процесса развития и движения эволюционировало в ходе обобщения естественнонаучных данных. Идеи самоорганизации резко выдвинулись вперед в связи с появлением новых данных, представленных кибернетикой. В формировании современных представлений на процесс самоорганизации существенную роль сыграла кибернетика. Кибернетика и ее принципы Кибернетика (от греч. kybenietike" — управление, искусство управления) — возникла в 40-х гг. XX в. в результате насущной практической потребности в повышении качества управления в производственно-технической, хозяйственной, политической, военной и других областях человеческой деятельности. Отцом кибернетики по праву называют выдающегося американского математика Н. Винера, который в 1948 г. впервые сформулировал основные идеи и принципы этой науки. Возникновение кибернетики было подготовлено всем предшествующим развитием науки — в первую очередь теории автоматического регулирования следящих систем, техники переработки и передачи информации, теории игр и оптимальных решений, физиологии (теории рефлексов), медицины, математической логики, теории алгоритмов и машин, радиоэлектроники и других наук. Решающую роль в появление и развитии кибернетики имело появление электронной автоматики и быстродействующих ЭВМ. В создании кибернетики принимали участие многие ученые: Д. Биглоу, К. Шеннон, И.М. Сеченов, И.П. Павлов, А.М. Ляпунов, А.А. Марков, А.Н. Колмогоров и др. Кибернетика — это наука об управлении и связи, оптимальном управлении, о восприятии, хранении и переработке информации, об алгоритмах переработки информации, о причинных сетях. Каждое из этих определений подчеркивает существенную сторону кибернетики. Область применения кибернетики определил Н. Винер — это машины, живые организмы и их объединения. Исходя из вышесказанного, кибернетика — это наука об управлении в машинах, живых организмах и их объединениях на основе получения, хранения, переработки и использования информации. Кибернетика — это наука об управлении в кибернетических системах. Кибернетические системы — это сложные динамические системы любой природы (технические, биологические, экономические, социальные, административные) с обратной связью. Сложными динамическими системами называются такие системы, которые содержат в себе множество более простых, взаимодействующих друг с другом систем и элементов, которые меняются, т.е. под воздействием определенных процессов переходят из одного устойчивого состояния в другое. Сущность управления, базирующегося на использовании обратной связи, было разработано задолго до возникновения кибернетики — в рефлекторной теории И.М. Сеченова и И.П. Павлова. Идея обратной связи была использована при создании автоматических регуляторов — поплавковых регуляторов Уатта. Кибернетика сформулировала принцип обратной связи: без обратной связи невозможно управление сложными и сложнодинамическими системами. В настоящее время этот принцип сознательно кладется в основу конструирования станков-автоматов, ЭВМ и других технических устройств. С учетом принципа обратной связи организуется управление (руководство) предприятия со стороны министерства, промышленными предприятиями — со стороны дирекции («летучки»), по той же схеме ректор осуществляет руководство преподавателем и группой, студенческими коллективами, а преподаватель — студентами и т.д. (дети — родители). Для кибернетики характерен макроподход: она ответвляется от внутреннего строения системы и рассматривает ее как единое целое, некий «черный ящик», способный функционировать с помощью потоков информации. Это и есть информативный принцип кибернетики. Теория информации — раздел кибернетики, занимающийся методами описания, оценки, хранения, передачи и использования информации. Первые исследования в этой области были проведены Р. Фишером (работы по математической статистике), Р. Хартли (запоминающие устройства, передача информации по каналам связи). Вероятностная теория информации окончательно нашла свое применение и оформление к работах К. Шеннона (1948 г.). Рассматривая зависимость информации на выходе от информации на входе системы, он разработал принцип функциональной связи. Кибернетика использует и микроподход: она предполагает определение внутреннего строения системы управления, выявление ее основных элементов, их взаимосвязи, алгоритмов их работы и возможность синтезировать из этих элементов системы управления. Кибернетику подразделяют на: ? теоретическую; ? техническую и ? прикладную. Теоретическая кибернетика связана с разработкой аппарата и методов исследования систем управления любой природы. Она связана с машинным моделированием на ЭВМ. Моделирование на ЭВМ ставит теоретическую кибернетику в особое положение по отношению к другим наукам: она дает принципиально новый подход и метод исследования практически всех наук: естественных, технических, гуманитарных. В этом она сходна с математикой. Но кибернетика — это не математика, так как имеет свой предмет исследования — системы управления. Создаются новые научные направления — математическая логика, теория вероятностей, вычислительная математика, теория информации, теория кодирования, теория алгоритмов и т.д. В самой кибернетике возникли такие разделы, как теория автоматов, теория формальных языков и грамматик, теория распознавания образов, теория самообучающихся и самоорганизующихся систем, теория игр, теория статистических решений и т.п. Машинное моделирования позволяет исследовать объекты на основе математической модели. Техническая кибернетика — это конструирование и эксплуатация технических средств, применяемая в управляющих и вычислительных устройствах. Одна из главных проблем здесь — это проблема «человек—машина», т.е. изучение автоматических систем управления (АСУ), где обязательно принимает участие человек-оператор. Здесь она пересекается с инженерной психологией. Основные проблемы, стоящие перед технической кибернетикой, — это распознавание образов, создание читающих автоматов, анализ ситуаций, характеризующих технический процесс, разработка диагностических устройств. Прикладная кибернетика содержит приложение двух предыдущих подразделов кибернетики к решению задач, относящихся к частным системам в биологии, медицине, экономике, промышленности, транспорте. Поэтому выделяют психологическую, биологическую и другие виды кибернетики. Таким образом, в кибернетике скрестились почти все виды отраслей знаний — это целое направление в науке, занимающейся исследованием общих принципов управления и способов использования их в технике. Самоорганизующиеся системы Сложнодинамические системы часто представляют собой самоорганизующиеся системы. В зависимости от выделения той или иной ведущей группы свойств их также называют саморегулирующимися, самонастраивающимися, самообучающимися, самоалгоритмизующимися системами. Самоорганизующимися называют такие системы, которые способны при изменении внешних или внутренних условий их функционирования и развития сохранять или совершенствовать свою организацию с учетом прошлого опыта, сигналы о которой поступают по каналам обратной связи. Примеры самоорганизующихся систем: отдельная живая клетка, организм, биологическая популяция, человеческий коллектив, машина-автомат, машина-робот. Так как в сложнодинамических системах имеют место процессы самоуправления и применяются операции управления, то они называются системами управления. Каждая система управления состоит из двух систем: управляемой и управляющей. Управляющая система воздействует на элементы управляемой системы и приводит ее в соответствие с заданным алгоритмом или целью в новое состояние. Различают три вида системы управления: ? живые организмы; ? сложные (с обратной связью) машины; ? человеческие коллективы. Заслуга кибернетики в том, что она показала универсальность процессов управления. Процесс управления осуществляется в соответствии с задачей или целью управления. Управляющая система вырабатывает и передает по каналу обратной связи сигналы, несущие команды, которые поступают в управляемую систему и приводят ее к изменению. От управляемой системы по каналу обратной связи передаются сигналы, несущие информацию о том, как выполнены команды. В соответствии с этой информацией система вырабатывает новые, корректирующие команды. Это происходит до тех пор, пока цель управления не оказывается достигнутой. Популярное:
|
Последнее изменение этой страницы: 2017-03-11; Просмотров: 869; Нарушение авторского права страницы