Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Прямая и обратная геодезические задачи



Прямая геодезическая задача заключается в том, что по известным координатам одной точки, дирекционному углу и расстоянию до другой определяют координаты последней. При вычислениях чаще всего дирекционные углы переводят в румбы. Прямая геодезическая задача решается и при вычислении координат вершин полигонов.

Дано: х1; у1 – координаты начальной точки; α 1-2; α 2-3; α 3-4; α 4-5; α 5-1 – дирекционные углы сторон полигона. d1-2; d2-3………………..d5-1 – горизонтальные проложения сторон полигона. Найти: х2 и у2; х3 и у3…………..х5 и у5. Разница между координатами соседних точек называется приращением координат: х2 – х1=Δ х1-2; у2 – у1=Δ у1-2. Отсюда х21+Δ х1-2; у21+Δ у1-2. Из треугольника следует (рис. 12): Δ х1-2=d1-2∙ cosr1-2; Δ у1-2= d1-2∙ sinr1-2.

Из рис. 13 следует: х32+Δ х2-3; у32+Δ у2-3; Δ х2-3=d2-3∙ cosr2-3;

Δ у2-3= d2-3∙ sinr2-3.

Перейдем к общему случаю: хnn-1+Δ хn; уnn-1+Δ уn; Δ хn= dn∙ cosrn; Δ уn= dn sinrn.

При вычислениях учитываются знаки приращений координат в зависимости от четверти, в которую направлена линия (см. выше). Если вместо румбов использовать дирекционные углы, то знаки перед приращениями координат получаются сами собой.

 

 

Рис. 12. Решение прямой геодезической задачи для линии 1-2

Х

 

 

Δ х2-3

х3

Δ у2-3

х2

 

У

у2 у3

 

 

Рис. 13. Решение прямой геодезической задачи для линии 2-3

Координаты n – ой точки полигона можно выразить и через координаты первой точки:

х21+Δ х1-2;

х32+Δ х2-31+ (Δ х1-2+ Δ х2-3);

х43+Δ х3-4= х1+ (Δ х1-2+ Δ х2-3+ Δ х3-4);

х54+Δ х4-5= х1+ (Δ х1-2+ Δ х2-3+ Δ х3-4+Δ х4-5);

…… хn= х1+ и уn1+ .

и – суммы приращений координат.

Отсюда запишем:

хn - х1=

уn - у1=

В случае замкнутого полигона, когда, обойдя все вершины поочередно, мы возвращаемся в исходную, хn - х1=0 и уn – у1=0. Следовательно, для замкнутого полигона сумма приращений координат по обеим осям равна нулю.

теор.=0 и теор.=0.

Однако в связи с ошибками в угловых и линейных величинах эта сумма будет несколько отличаться от 0. Мы возвратимся не в точку 1, а в 1΄

(рис. 14).

Полученная разница в суммах приращений координат называется невязкой:

изм.=fх≠ 0 – невязка по х;

изм.=fу ≠ 0 – невязка по у.

Для оценки точности полигона вычисляют абсолютную невязку:

(1 - 1΄ )=fабс.= ,

а затем относительную ошибку:

fотн.= ; Р – периметр.

 

Х

fу

1

fабс. fх 3

1'

 

 


5 4

 


У

 

Рис. 14. Виды невязок в полигоне

Если условие неравенства выполняется, полученную невязку по осям координат распределяют в вычисленные приращения в виде поправок с обратным невязке знаком, пропорционально значениям горизонтальных проложений: большую поправку в большее значение проложения.

Обратная геодезическая задача заключается в вычислении дирекционного угла и горизонтального проложения линии, по известным координатам ее начальной и конечной точек. Из предыдущих рисунков видно, что

d= ; tgr= ; r=arctgr; d= = .

Дирекционный угол находят по полученному румбу, учитывая четверть, в которую направлена прямая. Четверть определяется по знакам приращений координат:

1 четверть α =r; 2 четверть α =180° - r;

3 четверть α =r+180°; 4 четверть α =360° - r.

 

6.Топографические карты и планы

6.1. Понятие о плане, карте, профиле

План есть уменьшенное и подобное изображение на бумаге горизонтальной проекции сравнительно небольшого участка местности. Размеры участка до

25 км2. В этом случае не учитывается кривизна Земли. Степень уменьшения изображения сравнительно небольшая: 100, 200, 500…5000раз. Для удобства пользования на планах наносится координатная сетка. Планы могут быть горизонтальными (контурными), высотными и контурно-высотными (топографическими).

 


координатная сетка километровая сетка

План М 1: 500 Карта М 1: 10000

Рис. 15. План, карта

Карта – уменьшенное и закономерно искаженное вследствие влияния кривизны Земли изображение на бумаге горизонтальной проекции значительной части или всей земной поверхности. Степень уменьшения больше по сравнению с планом: 10000 раз, 50000…... Искажения происходят из-за невозможности развертывания сферических поверхностей (геоид, эллипсоид) в плоскость (бумага плоская) без разрывов и складок. На картах наносят градусные и километровые сетки. Все карты контурно – высотные (топографические).

По планам и картам можно решать ряд задач:

1. Определение расстояний между точками.

2. Определение прямоугольных и географических координат точек.

3. Определение абсолютных отметок точек.

4. Ориентирование линий местности.

5. Построение профилей по заданным направлениям.

6. Определение крутизны ската.

7. Определение водосборной площади и другие.

Порядок решения задач смотри [5].

Профиль местности есть линия пересечения земной поверхности с отвесной (вертикальной) плоскостью, расположенной в заданном направлении (PQ) (рис. 16). Его уменьшенное изображение на бумаге также называется профилем. Направление сечения может быть прямолинейным, ломаным или криволинейным.

 

 

 


Р

 

 


Q

 

 

 


Рис. 16. Профиль

 


Поделиться:



Популярное:

  1. I I. Цели, задачи, результаты выполнения индивидуального проекта
  2. II. Основные задачи управления персоналом.
  3. II. Решить следующие ниже финансовые задачи на листе “Задачи”.
  4. II. Цели, задачи и предмет деятельности
  5. III. Задачи, решаемые организацией с помощью ИСУ и ИТУ.
  6. III. ЦЕЛИ, ЗАДАЧИ И ПРИНЦИПЫ ДЕЯТЕЛЬНОСТИ РАЙОННОЙ ОРГАНИЗАЦИИ ПРОФСОЮЗА
  7. III. Экономико-управленческие задачи производственной практики
  8. А. П. Петрова. «Сценическая речь» - Пути воплощения сверхзадачи
  9. Анализ использования основных фондов: задачи, объекты, этапы, источники информации, основные показатели.
  10. Анализ финансового состояния организации: задачи, методы, виды, последовательность, информационная база.
  11. Анализ финансовых результатов: задачи, объекты, этапы, источники информации, основные показатели.
  12. Аналитические возможности, задачи и основные направления анализа СНС


Последнее изменение этой страницы: 2017-03-11; Просмотров: 1042; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.027 с.)
Главная | Случайная страница | Обратная связь