Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Метод коэффициента использования светового потока



Методом коэффициента использования светового потока рассчитывают общее равномерное освещение горизонтальных поверхностей.

По этому методу расчета освещенность на горизонтальной поверхности определяют с учетом светового потока, отраженного от стен, потолка и самой рабочей поверхности.

Метод коэффициента использования применим для расчета освещения помещений светильниками с разрядными лампами и лампами накаливания.

Коэффициентом использования светового потока осветительной установки называется отношение светового потока, падающего на горизонтальную поверхность, к суммарному потоку всех ламп, размещенных в данном освещаемом помещении

 

h=(Фп+Фотр)/nФл=Фр/nФл, (2.9)

где Фп – световой поток, падающий от светильников непосредственно на освещаемую поверхность, лм;

Фотр – отраженный световой поток, лм;

Фл – световой поток лампы, лм;

Фр – результирующий световой поток, лм;

n – количество ламп в освещаемом помещении.

При расчете по методу коэффициента использования световой поток светильника, лампы, или ряда светильников необходимый для создания заданной минимальной освещенности определяется по формуле

 

Ф = Еmin kз S z / n h, (2.10)

где Еmin – заданная минимальная (нормируемая) освещенность, лк;

kз – коэффициент запаса (принимается по табл. П6);

S – площадь помещений, м2;

z – отношение Еср/Еmin (коэффициент неравномерности освещения, принимается 1, 15 для ЛН и ДРЛ, 1, 1 – для ЛЛ);

n – количество светильников, ламп или рядов светильников (как правило, принимается до расчета по сетке размещения светильников);

h - коэффициент использования светового потока, о.е.

В практике светотехнических расчетов значение h определяется из таблиц [10], связывающих геометрические параметры помещений (индекс помещения i) с их оптическими характеристиками – коэффициентами отражения (rп – потолка, rс – стен, rр – рабочей поверхности или пола) и КСС конкретных типов светильников.

По мере того, как число типов светильников, применяемых в практике непрерывно возрастает, обращение к таблицам, рассчитанным для конкретных светильников, затрудняется. Такое положение привело к разработке [11] унифицированных таблиц значений коэффициента использования, применительно к классификационным КСС (табл. П11).

Тогда коэффициент использования светового потока определится по выражению:

 

h = hс× hп, (2.11)

где hс – к.п.д. светильника, о.е.;

hп – к.п.д. помещения – унифицированное значение коэффициента использования, принятое по табл. П.11.

Индекс помещения определяется по формуле:

 

, (2.12)

где А и В – соответственно длина и ширина помещения, м;

Нр – расчетная высота подвеса светильников, м.

Для помещений с А/В ³ 10, можно считать i=В/Нр.

Приблизительные значения коэффициентов отражения ((rп, rс, rр) можно принять по следующим характеристикам помещения:

- побеленный потолок и стены – 70%;

- побеленный потолок, стены

окрашены в светлые тона – 50%;

- бетонный потолок, стены оклеены

светлыми обоями, бетонные стены - 30%;

- стены и потолок в помещениях

оштукатуренные, темные обои - 10%.

Если в формулу 2.10 в качестве n подставлялось значение, равное количеству ламп, то по рассчитанному световому потоку выбирается ближайший стандартный источник света (лампа) в пределах допустимых отклонений – -10…+20 %. Если такое приближение не выполняется, то корректируется число ОП.

Если в формулу 2.10 в качестве n подставляется количество рядов светильников, то расчетным световым потоком является световой поток одного ряда светильников (Фр). Тогда по найденному Фр выполняется компоновка ряда, т.е. определяется число и мощность светильников, при которых Фр близко к необходимому.

Определяются габаритные размеры светильников, и суммарную длину ряда светильников сопоставляют с длиной помещения. При этом возможны следующие случаи:

а) суммарная длина светильников превышает длину помещения – необходимо или применить более мощные лампы, или увеличить число рядов, или компоновать ряды из сдвоенных, строенных и т.д. светильников;

б) суммарная длина светильников равна длине помещения – задача решается путем устройства непрерывного ряда светильников;

в) суммарная длина светильников меньше длины помещения – принимается ряд с равномерными разрывами между светильниками.

По выражению 2.10 может решаться и обратная задача – по заданному световому потоку лампы, светильника для обеспечения нормируемой освещенности в помещении рассчитываться количеством источников света, светильников.

 

2.4.3. Метод удельной мощности освещения

Удельная мощность освещения представляет собой отношение суммарной мощности всех источников света к площади освещаемого ими помещения - Руд [Вт/м2].

Для различных типов светильников составлены таблицы удельной мощности [10] в зависимости от нормируемой освещенности, площади помещения и высоты подвеса светильников. Причем, каждая таблица соответствует определенному сочетанию коэффициентов отражения потолка, стен и рабочей поверхности.

Для некоторых типов светильников в упрощенной форме значения удельных мощностей освещения приведены в табл. П12.

Расчет данным методом сводится к следующему:

а) по одной из таблиц [10] или П12 наиболее близко отвечающей заданным условиям принимается величина удельной мощности;

б) определяется установленная мощность источников света в помещении:

 

Р=Руд× S, (2.12)

где S – площадь освещаемого помещения;

в) составляется схема (сетка) размещения светильников (см. п. 2.3.3) и подсчитывается их количество n;

г) определяется мощность светильника (источника света):

 

(2.13)

Если значения освещенности и коэффициента запаса отличаются от указанных в таблицах, допускается пропорциональный пересчет значений руд.

Если освещение выполнено светильниками с люминесцентными лампами, то по установленной мощности Р определяется мощность одного ряда и далее осуществляется компоновка его светильниками.

 

Точечный метод расчета

Точечный метод расчета освещения является обязательным для расчета освещенности негоризонтальных поверхностей, общего локализованного, эвакуационного, местного и наружного освещения. Он позволяет рассчитывать световой поток источника света, светильника, ряда светильников.

Существуют две интерпретации метода:

а) точечный метод с использованием пространственных изолюкс. Применяется для расчета освещения от точечных источников света (ЛН, ДРЛ, ДРИ и т.п.); люминесцентных ламп, длина которых не превышает 0, 5Нр;

б) точечный метод с использованием линейных изолюкс. Применяется для расчета освещения от светящих линий.

Точечный метод с использованием пространственных изолюкс. Пространственные изолюксы или кривые значений освещенности составлены для стандартных светильников с условной лампой 1000 лм в прямоугольной системе координат [10] в зависимости от высоты подвеса светильника Нр и расстояния d проекции светильника на горизонтальную поверхность до контрольной (характерной) точки.

Порядок расчета данным методом следующий:

а) на плане помещения с известным расположением светильников намечается одна или две контрольные точки, в которых ожидается наименьшая освещенность. Например т. А (рис. 2.5);

б) определяются расстояния от контрольной точки до ближайших светильников, т.е. расстояния d1, d2, … d6;

в) в зависимости от типа светильников по кривым пространственных изолюкс [10] для каждого значения Нр и d находятся условные освещенности в люксах, т.е. соответственно е1, е2, …, е6. Значения е в большинстве случаев определяются путем интерполирования между значениями, указанными у ближайших изолюкс.

.
.
.
.
.
.
А
d1 d3 d5
d2 d4 d6

 


Рис. 2.5. Фрагмент плана помещения с расположением светильни

ков и контрольной точки А

 

Если заданные Нр и d выходят за пределы шкал на графиках в ряде случаев возможно обе эти координаты увеличить (уменьшить) в n раз, так чтобы точка оказалась в пределах графика и определенное по графику значение е увеличить (уменьшить) в n2 раз. При отсутствии изолюкс для данного светильника можно воспользоваться графиком для излучателя, имеющего по всем направлениям силу света 100 кд (рис. 2.6).

 

Нр

Рис. 2.6. Пространственные изолюксы условной горизонтальной

освещенности. Сила света светильника по всем направлениям 100 кд

 

Значение условной освещенности e100 определяется по координатам Нр и d, одновременно по радиальным лучам находится значение a и по кривой силы света светильников Ia, тогда

 

; (2.14)

г) находится общая условная освещенность контрольной точки:

 

; (2.15)

д) определяется потребный световой поток лампы в одном светильнике по формуле:

 

(2.16)

где Еmin – нормируемая освещенность, лк;

Кз – коэффициент запаса;

m - коэффициент, учитывающий освещенность от удаленных источников света, принимается равным 1, 1…1, 2;

е) по полученному расчетному световому потоку выбирают мощность стандартной лампы.

При выборе контрольной точки на вертикальной или наклонной плоскости освещенность ее может быть определена по следующей исходной формуле:

 

, (2.17)

где Ia - сила света излучателя по направлению т. А (рис. 2.7);

a - угол между направлением к расчетной точке осью симметрии светильника;

q - угол наклона расчетной плоскости по отношению к плоскости, перпендикулярной оси симметрии светильника (горизонтальная плоскость). Знак " -" принимается при условии .

В частном случает при горизонтальном расположении поверхности q = 0:

. (2.18)

d
A
q
Hp
a
Uc
Ia

 


Рис. 2.7. К расчету освещенности от точечного источника света

Освещенность наклонной плоскости, выраженная через освещенность горизонтальной плоскости:

 

. (2.19)

Освещенность вертикальной поверхности:

 

(2.20)

или

. (2.21)

Пример 1. Определить освещенность в контрольной точке А (рис. 2.5). Для освещения помещения применены светильники типа НСП17 с лампами накаливания мощностью 200 Вт. Расчет производился методом коэффициента использования светового потока при нормируемой освещенности 200 лк.

Решение. Определим расстояние (в метрах) d проекции каждого светильника до точки А. По кривым равной освещенности (изолюксам) для светильника типа НСП17 находим значения условных освещенностей [10] и заносим в табл. 2.4.

 

Таблица 2.4

Значения условных освещенностей

Номер светильника Расстояние от проекции d, м Условная освещенность, лк
2, 1
2, 1
4, 7
2, 1
2, 1
4, 7

 

Сумма условных освещенностей от светильников 1-6 для расчетной точки А составит:

 

Определяем действительную расчетную освещенность в точке А:

 

,

принимаем m = 1, 1.

 

.

Точечный метод с использованием линейных изолюкс применяется для расчета освещения от светящих линий.

Светящей линией является непрерывный ряд светильников с люминесцентными лампами или ряд с разрывами между светильниками (l) при условии, если l< 0, 5Нр, или отдельный излучатель (светильник), если его длина превышает 0, 5Нр.

Для расчета освещения от светящих линий применяются линейные изолюксы светильников, составленные при плотности светового потока и расчетной высоте Нр = 1м в координатах и (см. рис. 2.8).

 

L
A
Hp
р

 

 


Рис. 2.8. Светящая линия (L) с указанием размеров, определяющих

положение ее по отношению к контрольной точке; Нр – расчетная высота подвеса светильников; р – расстояние от контрольной точки в плоскости перпендикулярной светящей линии до перпендикуляра, опущенного на расчетную плоскость от светящей линии

 

На рис. 2.9-2.12 приведены линейные изолюксы для некоторых типов светильников с люминесцентными лампами.

Рис. 2.9. Линейные изолюксы для светильников ПВЛМ с 2 лампами ЛБР

 

Рис. 2.10. Линейные изолюксы для светильников группы 1

 

Рис. 2.11. Линейные изолюксы для светильников группы 2

 

Рис. 2.12. Линейные изолюксы для светильников группы 3

Расчет светового потока всех ламп в ряду выполняется в следующей последовательности:

а) на плане помещения с указанием светящих линий отмечают расчетную точку в конце ряда светильников и лежащую посередине между параллельными рядами. Находят ее относительные координаты, т.е. р' и L';

б) по кривым линейных изолюкс ([10] или рис. 2.9-2.12) определяют относительную освещенность e по найденным р' и L'.

в) потребный световой поток ламп в ряду рассчитывают по следующей формуле:

 

, (2.22)

где m - коэффициент, учитывающий освещенность от удаленных источников света, m=1, 1;

- сумма относительных освещенностей от ближайших рядов (части рядов) светильников.

г) по Фр подбирается число и мощность ламп в ряду.

По формуле 2.22 может быть решена задача определения Е в контрольной точке А. При этом, если контрольная точка не находится напротив конца светящей линии, поступают следующим образом. Линия либо разделяется условно на две части, относительные освещенности от которых суммируются (рис. 2.13, а), либо дополняется воображением отрезком, освещенность которого затем вычитается (рис. 2.13, б).

 

 

A
e1
e2
e = e1+e2
а)
A
e2
e1
e = e1-e2
б)

 

 


Рис. 2.13. Схема расчета относительной освещенности для точек,

нележащих в конце светящей линии

 

Пример 2. Освещение помещения производственного участка, имеющего размеры 15´ 6 м, выполняется светильниками типа ПВЛМ 2´ 40 Вт. Подвешены они на высоте 4 м над освещаемой поверхностью. Светильники располагаются в два непрерывных ряда (рис. 2.14).

Определить освещенность в точке А (рис. 2.14).

Решение. Точка А освещается четырьмя полурядами, обозначенными цифрами от 1 до 4.

Определяем относительные величины р' и L' для каждого отрезка ряда светильников, а по кривым линейных изолюкс для светильника типа ПВЛМ (рис. 2.9) находим значения относительной освещенности и заносим в табл. 2.5.

 

Таблица 2.5

Относительные величины р' и L', е

Номер отрезка ряда светильников р L р' L' е
1, 7 1, 5 0, 475 0, 375
1, 7 1, 5 0, 475 0, 375
1, 7 13, 5 0, 475 3, 375
1, 7 13, 5 0, 475 3, 375

Световой поток светильника ПВЛМ2´ 40 Вт – Фсв=2´ 3200=6400 лм. Длина ЛЛ-40 Вт – 1199 мм. Коэффициент запаса Кз=1, 5. m=1, 1. Тогда освещенность в точке А составит:

 

.

1, 5
1, 5     3, 0
А
1 3
2 4

 

 


Рис. 2.14. Схема к расчету освещенности в точке А

 


Поделиться:



Популярное:

  1. I. Теоретические основы использования палочек Кюизенера как средство математического развития дошкольников.
  2. Административные правонарушения в области охраны историко-культурного наследия. Правонарушения против порядка использования топливно-энергетических ресурсов (Гл. 19,20)
  3. Анализ денежных потоков и расчет ликвидного денежного потока.
  4. Анализ использования материальных ресурсов
  5. Анализ использования основных фондов: задачи, объекты, этапы, источники информации, основные показатели.
  6. Анализ использования производственной мощности предприятия
  7. Анализ использования производственных мощностей организации
  8. Анализ использования различных рекламных средств ООО «Евросеть Ритейл» за 2007–2008 годы.
  9. Анализ использования средств на оплату труда
  10. Анализ использования строительной техники
  11. Анализ использования технологического оборудования
  12. Анализ использования фонда рабочего времени


Последнее изменение этой страницы: 2017-03-11; Просмотров: 3670; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.058 с.)
Главная | Случайная страница | Обратная связь