Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Билет 18)Поток энергии в волновых процессах



Бегущими волнами называются волны, ко­торые переносят в пространстве энергию. Перенос энергии в волнах количественно характеризуется вектором плотности по­тока энергии. Этот вектор для упругих волн называется вектором Умова (по име­ни русского ученого Н. А. Умова (1846— 1915), решившего задачу о движении энергии в среде). Направление вектора Умова совпадает с направлением переноса энергии, а его модуль равен энергии, пере­носимой волной за единицу времени через единичную площадку, расположенную перпендикулярно направлению распро­странения волны. Для вывода уравнения бегущей во­лны — зависимости смещения колеблю­щейся частицы от координат и времени — рассмотрим плоскую волну, предполагая, что колебания носят гармонический ха­рактер, а ось х совпадает с направлением распространения волны (рис. 220). В дан­ном случае волновые поверхности перпен­дикулярны оси х, а так как все точки волновой поверхности колеблются одина­ково, то смещение x будет зависеть только от х и t, т. е. x=x(х, t).На рис. 220 рассмотрим некоторую частицу среды В, находящуюся от источ­ника колебаний О на расстоянии х. Если колебания точек, лежащих в плоскости х=0, описываются функцией x(0, t)=Аcoswt, то частица среды В колеблется по тому же закону, но ее колебания будут отставать по времени от колебаний источ­ника на т, так как для прохождения во­лной расстояния х требуется время. t=x/v, где v — скорость распространения волны. Тогда уравнение колебаний частиц, лежащих в плоскости х, имеет вид x(x, t)=Acosw(t-x/v), (154.1)откуда следует, что x(х, t) является не только периодической функцией времени, но и периодической функцией координаты х. Уравнение (154.1) есть уравнение бегу­щей волны. Если плоская волна распро­страняется в противоположном направле нии, то x(х, t)=A cosw(t+x/v).В общем случае уравнение плоской волны, распространяющейся вдоль поло­жительного направления оси х в среде, не поглощающей энергию, имеет вид

x(x, t)=Acos[w(t -х/v)+j0], (154.2)где А=const — амплитуда волны, w — циклическая частота волны, j0 — началь­ная фаза колебаний, определяемая в об­щем случае выбором начал отсчета х и t, [w(t-x/v)+j0]— фаза плоской волны.

 


 

19)Дифференциальное уравнение электромагнитной волны. Можно по­казать, что для однородной и изотропной среды вдали от зарядов и токов, создаю­щих электромагнитное поле, из уравнений Максвелла следует, что векторы напряженностей Е и Н переменного электро­магнитного поля удовлетворяют волново­му уравнению типа (154.9):

— оператор Лапласа, v — фазовая ско­рость.

Всякая функция, удовлетворяющая уравнениям (162.1) и (162.2), описывает некоторую волну. Следовательно, электро­магнитные поля действительно могут су­ществовать в виде электромагнитных волн. Фазовая скорость электромагнитных волн определяется выражением

где с= 1/Ö e0m0, e0 и m0 — соответственно

электрическая и магнитная постоянные, e и m — соответственно электрическая и магнитная проницаемости среды. Следствием теории Максвелла являет­ся поперечность электромагнитных волн: векторы Е и Н напряженностей электриче­ского и магнитного полей волны взаимно перпендикулярны (на рис. 227 показана моментальная «фотография» плоской электромагнитной волны) и лежат в плос­кости, перпендикулярной вектору v скоро­сти распространения волны, причем векто­ры Е, Н и v образуют правовинтовую систему. Из уравнений Максвелла следует также, что в электромагнитной волне век­торы Е и Н всегда колеблются в одина­ковых фазах (см. рис. 227), причем мгно­венные значения £ и Я в любой точке связаны соотношением

Ö e0e=Ö m0mН. (162.4)Следовательно, E и H одновременно достигают максимума, одновременно об­ращаются в нуль и т. д.От волновых уравнений (162.1) и (162.2) можно перейти к уравнениям

где соответственно индексы у и z при Е н Н подчеркивают лишь то, что векторы Е и Н направлены вдоль взаимно перпен­дикулярных осей у и z.

Уравнениям (162.5) и (162.6) удов­летворяют, в частности, плоские монохро­матические электромагнитные волны (электромагнитные волны одной строго определенной частоты), описываемые уравнениями

Еу0cos(wt-kx+j), (162.7) Hz= H0cos(wt-kx+j), (162.8)где е0и Н0соответственно амплитуды напряженностей электрического и магнит­ного полей волны, w — круговая частота волны, k=w/v— волновое число, j— начальные фазы колебаний в точках с ко­ординатой х=0. В уравнениях (162.7) и (162.8) j одинаково, так как колебания электрического и магнитного векторов в электромагнитной волне происходят с одинаковой фазой.

Энергия электромагнитных волн.Вектор пОЙТИНГА Объемная плотность w энергии электромагнитной волны скла­дывается из объемных плотностей wэл (см. (95.8)) и wм (см. (130.3)) электриче­ского и магнитного полей: w = wэл+wм=e0eE2/2+m0mH2/2.Учитывая выражение (162.4), получим, что плотность энергии электрического и магнитного полей в каждый момент вре­мени одинакова, т. е. wэл = wм. Поэтому

w =2wэл=e02 =Ö e0m0Ö emЕН.Умножив плотность энергии w на скорость v распространения волны в среде получим модуль плотности потока энергии: S=wv=EH.Так как векторы Е и Н взаимно пер­пендикулярны и образуют с направлением распространения волны правовинтовую

систему, то направление вектора [ ЕН ] совпадает с направлением переноса энер­гии, а модуль этого вектора равен ЕН. Вектор плотности потока электромагнит­ной энергии называется вектором Умова— Пойнтинга:

S = [ EH ].Вектор S направлен в сторону рас­пространения электромагнитной волны, а его модуль равен энергии, переносимой электромагнитной волной за единицу вре­мени через единичную площадку, перпен­дикулярную направлению распростране­ния волны

Плоские электромагнитные волны Исследуем плоскую электромагнитную волну, распространяющуюся в нейтральной непроводящей среде с постоянными проницаемостями e и m (r = 0, j = 0, e = const, m = const). Направим ось х перпендикулярно к волновым поверхностям. Тогда Е и Н, а значит, и их компоненты по координатным осям не будут зависеть от координат у и 2. Поэтому уравнения (9.21)–(9.24) упрощаются следующим образом:

Уравнение (15.14) и первое из уравнений (15.13) показывают, что Ех не может зависеть ни от х, ни от t. Уравнение (15.12) и первое из уравнений (15.11) дают такой же результат для Hx Следовательно, отличные от нуля Ех и Нх могут быть обусловлены лишь постоянными однородными полями, накладывающимися на электромагнитное поле волны. Само поле волны не имеет составляющих вдоль оси х. Отсюда вытекает, что векторы Е и Н перпендикулярны к направлению распространения волны, т.е. что электромагнитные волны поперечны. В дальнейшем мы будем предполагать постоянные поля отсутствующими и полагать Ех = Нх = 0.Два последних уравнения (15.11) и два последних уравнения с (15.13) можно объединить в две независимые группы:

олученные уравнения представляют собой частный случай уравнений (15.8) и (15.9).

Напомним, что Ех = Еz = 0 и Нх = Нy = 0, так что Еу = Е и Нz = H. Мы сохранили в уравнениях (15.17) и (15.18) индексы у и z при Е и H, чтобы подчеркнуть то обстоятельство, что векторы Е и Н направлены вдоль взаимно перпендикулярных осе y и r.

Простейшим решением уравнения (15.17) является функция

Ey = Emcos(w t – kx + a 1).(15.19)

Решение уравнения (15.18) имеет аналогичный вид:

Hz = Нт cos(w tkх + a 1). (15.20)

В этих формулах w – частота волны, k – волновое число, равное w /u, a 1 и a 2 – начальные фазы колебаний в точках с координатой х = 0.

На рисунке 15.1 показана “моментальная фотография” плоской электромагнитной волны. На рисунке видно, что векторы Е и Н образуют с направлением распространения волны правовинтовую систему.

В фиксированной точке пространства векторы Е и Н изменяются со временем по гармоническому закону. Они одновременно увеличиваются от нуля, затем через 1/4 периода достигают наибольшего значения, причем, если Е направлен вверх, то Н направлен вправо (смотрим вдоль направления, по которому распространяется волна). Еще через 1/4 периода оба вектора одновременно обращаются в нуль. Затем опять достигают наибольшего значения, но на этот раз Е направлен вниз, а Н влево. И, наконец, по завершении периода колебания векторы снова обращаются в нуль. Такие изменения векторов Е и Н происходят во всех точках пространства, но со сдвигом по фазе, определяемым расстоянием между точками, отсчитанными вдоль оси х.

 

 


 

Билет 20.

Предположим, что две монохроматические световые волны, накладываясь друг на друга, возбуждают в определенной точке пространства колебания одинакового направ­ления: х11 cos(w t + j1) и x2 = A2 cos(w t + j2). Под х понимают напряженность элект­рического Е или магнитного Н полей волны; векторы Е и Н колеблются во взаимно перпендикулярных плоскостях. Напряженности электрического и магнит­ного полей подчиняются принципу суперпозиции (см. § 80 и 110). Амплитуда резуль­тирующего колебания в данной точке .Так как волны когерентны, то cos(j2 — j1) имеет постоянное во времени (но свое для каждой точки пространства) значение, поэтому интенсивность результирующей волны (I ~ А2) (172.1В точках пространства, где cos(j2—j1)> 0, интенсивность I> I1+I2, где cos(j2—j1)< 0, интенсивность I< I1+I2. Следовательно, при наложении двух (или нескольких) коге­рентных световых волн происходит пространственное перераспределение светового потока, в результате чего в одних местах возникают максимумы, а в других — мини­мумы интенсивности. Это явление называется интерференцией света.

Для некогерентных волн разность j2—j1 непрерывно изменяется, поэтому среднее во времени значение cos(j2—j1) равно нулю, и интенсивность результирующей волны всюду одинакова и при I1=I2 равна 2I1 (для когерентных волн при данном условии в максимумах I=4I1, в минимумах I=0).

Для получения когерентных световых волн применяют метод разделения волны, излучаемой одним источником, на две части, которые после прохождения разных оптических путей накладываются друг на друга, и наблюдается интерференци­онная картина.

Пусть разделение на две когерентные волны происходит в определенной точке О. До точки M, в которой наблюдается интерференционная картина, одна волна в среде с показателем преломления п1 прошла путь s1, вторая — в среде с показателем преломления n2 путь s2. Если в точке О фаза колебаний равна wt, то в точке М первая волна возбудит колебание A1cos(t–s1/v1), вторая волна — колебание A2cos(t–s2/v2), где v1=c/n1, v2=c/n2 — соответственно фазовая скорость первой и второй волны. Разность фаз колебаний, возбуждаемых волнами в точке М, равна

(учли, что w /с = 2pn/с = 2p/l0, где l0 — длина волны в вакууме). Произведение геомет­рической длины s пути световой волны в данной среде на показатель n преломления этой среды называется оптической длиной пути L , a D = L2 L1 — разность оптических длин проходимых волнами путей — называется оптической разностью хода. Если оптическая разность хода равна целому числу длин волн в вакууме

(172.2)

то d = ±2тp, и колебания, возбуждаемые в точке М обеими волнами, будут проис­ходить в одинаковой фазе. Следовательно, (172.2) является условием интерференционного максимума.

Если оптическая разность хода

(172.3)

то d = ±2(т+1)p, и колебания, возбуждаемые в точке М обеими волнами, будут происходить в противофазе. Следовательно, (172.3) является условием интерференционного минимума.

 

 


Билет 21.


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 965; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.021 с.)
Главная | Случайная страница | Обратная связь