Определение понятия «система».
Решение вопроса о специфических признаках системного подхода, в отличие от любого другого типа научного исследования, предопределяется тем, что понимается под системой.
Термин «система» употребляется во многих значениях, что приводит к опасности упустить основное содержание этого понятия.
Под системой понимается:
o «Комплекс элементов, находящихся во взаимодействии» (Л. Берталанфи);
o «Нечто такое, что может изменяться с течением времени», «любая совокупность переменных..., свойственных реальной логике» (Р. Эшби);
o «Множество элементов с соотношением между ними и между их атрибутами (Холл А., Фейдшин Р.)»;
o «Совокупность элементов, организованных таким образом, что изменения, исклю-чения или введение нового элемента закономерно отражаются на остальных эле-ментах» (Топоров В.Н.);
o «Взаимосвязь самых различных элементов», «все состоящее из связанных друг с другом частей» (С. Бир);
o «Отображение входов и состояний объекта в выходных объекта» (М. Месарович).
Правильно было бы сказать, что строгого, единого определения для понятия «система» в настоящее время нет.
В первом приближении можно придерживаться нормативного понятия системы.
Система (греч.- «составленное из частей», «соединение» от «соединяю») - объективное единство закономерно связанных друг с другом предметов, явлений, а также знаний о природе и обществе.
Система есть совокупность или множество связанных между собой элементов.
Элементы системы могут представлять собой понятия, в этом случае мы имеем дело с понятийной системой (инструмент познания).
Элементами системы могут являться объекты (устройства) (ПК - клавиатура, мышь, монитор и т.д.).
Элементами системы могут быть субъекты: игроки в футбольной команде, студенты в группе и т.д.
Таким образом, система - это совокупность живых и неживых элементов либо тех и других вместе. Существует несколько десятков определений этого понятия. Их анализ показы-вает, что определение понятия система изменялось не только по форме, но и по содержанию.
Так Л. фон Берталанфи определяет систему, как «комплекс взаимодействующих компо-нентов или как совокупность элементов, находящихся в определенных отношениях друг с дру-гом и со средой».
Система - это полный, целостный набор элементов, взаимосвязанных между собой так, чтобы могла реализовываться функция системы.
Отличительным (главным свойством) системы является ее целостность. Комплекс объектов, рассматриваемых в качестве системы, представляет собой некоторое единство, целостность, обладающую общими свойствами и поведением.
Очевидно, необходимо рассматривать и связи системы с внешней средой.
Система проявляется как целостный материальный объект, представляющий собой закономерно обусловленную совокупность функционально взаимодействующих элементов. Основные свойства системы проявляются через целостность, взаимодействие и взаимозависимость процессов преобразования вещества, энергии и информации, через ее функциональность, структуру, связи, внешнюю среду и пр.
Как и любое фундаментальное понятие, система конкретизируется в процессе рассмотрения ее основных свойств.
Можно выделить четыре основных свойства:
o система есть, прежде всего, совокупность элементов, которые при определенных услови-ях могут рассматриваться как системы;
o наличие существенных связей между элементами и (или) их свойствами, превосходящих по мощности (силе) связи этих элементов с элементами не входящими в данную систему. Под существенными связями понимаются такие, которые закономерно, с необходимостью определяют интегративные свойства системы. Указанное свойство отличает систему от простого конгломерата и выделяет ее из окружающей среды;
o наличие определенной организации, что проявляется в системе энтропии (системе неопределенности, хаоса), системы по сравнению с энтропией системообразующих факто-ров, определяющих возможность создания системы, число существенных связей, кото-рыми может обладать элемент, число квантов пространства и времени;
o существование интегративных свойств, т.е. присущих системе в целом, но не свойствен-ных ни одному из ее элементов в отдельности. Их наличие показывает, что свойства си-стемы хотя и зависят от свойств элементов, но не окружают их полностью. Т.е. система не сводится к простой совокупности элементов, и, расчленяя систему на отдельные ча-сти, нельзя познать все свойства системы в целом.
В самом общем случае понятие «система» характеризуется:
o наличием множества элементов;
o наличием связей между ними;
o целостным характером данного устройства или процесса.
В научной литературе имеется множество определений этого понятия. В философском теоретико-познавательном смысле система есть способ мышления как способ постановки и упо-рядочения проблем. В научно-исследовательском понимании система представляет собой общую методологию исследования процессов и явлений, отнесенных к какой-либо области человеческих знаний, в качестве объекта системного анализа. В проектном понимании система представляется как методология проектирования и создания комплексов методов и средств для достижения определенной цели. В наиболее узком, инженерном смысле система понимается как взаимосвязанный набор вещей (объектов) и способов их использования для решения опреде-ленных задач. В Советском энциклопедическом словаре система определяется как множество элементов, находящихся в отношениях и связях друг с другом, образующих определенную целостность, единство.
Анализируя различные взаимно дополняющие понятия системы, следует отметить, что наиболее полное определение должно включать и элементы, и связи, и свойства, и цель, и наблюдателя (исследователя), и его язык, с помощью которого отображается объект или процесс. Однако есть системы, для которых наблюдатель, исследователь очевиден, и его не надо включать в определение системы, например для некоторых технических систем. Иногда не нужно в явном виде говорить о цели. Таким образом, при исследовании с целью проектирова-ния, создания или совершенствования объектов техники нужно проанализировать ситуацию с помощью полного определения системы, а затем, выделив наиболее существенные компоненты, принять " рабочее" определение системы, которым будут пользоваться все лица, участвующие в принятии решении. Важно, чтобы в понятии " система" был отражен подход и объект исследования как к системе. Дело в том, что один и тот же объект на разных этапах его рассмотрения может быть представлен в различных аспектах, соответственно существуют и различные аспекты понятия " система": теоретико-познавательный, методологический, научно-исследовательский, проектный, инженерный, конструкторский и т.д., - вплоть до материального воплощения.
Система представляет собой совокупность элементов (объектов, субъектов), находящихся между собой в определенной зависимости и составляющих некоторое единство (целостность), направленное на достижение определенной цели.
Система может являться элементом другой системы более высокого порядка (надсистема) и включать в себя системы более низкого порядка (подсистемы).
Таким образом, понятия " элемент", " подсистема", " система", " надсистема" взаимно преобразуемы: система может рассматриваться как элемент системы более высокого порядка, а элемент - как система (при углубленном анализе).
Система может быть представлена в виде блока с неизвестной структурой и из-вестными только " входами" и " выходами" (в кибернетике и теории систем такое представление называют " черным ящиком" ) или в виде графических структур с не до конца выявленными элементами и существенными связями, или в виде математического описания, например в виде формул.
В настоящее время ученые пришли к выводу, что математика неэффективна при исследовании широких проблем с множеством неопределенностей, которые характерны для исследования и разработки техники как единого целого. Вырабатывается концепция такого исследования, в котором упор делается преимущественно на разработку новых диалектических принципов научного мышления, логического анализа систем с учетом их взаимосвязей и противоречивых тенденций. При таком подходе на первый план выдвигаются не математические методы, а сама логика системного подхода, упорядочение процедуры принятия решений. И видимо, не случайно, что под системным подходом зачастую принимается некоторая совокупность системных принципоПринципы системного подхода.
Принцип - это обобщенные опытные данные, это закон явлений, найденный из наблюдений. Поэтому их истинность связана только с фактом, а не с какими-либо домыслами. Из принципов путем логико-математического рассуждения получают в применении к конкретным ТС бесчисленные следствия, охватывающие всю область явления и составляющие безукоризненную теорию. Теории такого рода необычайно прочны и незыблемы: они построены из самого добротного материала - верного опыта и тонкого рассуждения.
В формулировке принципов существует некоторый элемент условности, связанный с общим уровнем развития науки в данную историческую эпоху. Поэтому происходит постепенное уточнение принципов, но не их отмена или пересмотр.
По своей структуре методы и принципы имеют общие черты и различия.
Метод - это не фактическая деятельность, а возможные ее альтернативные способы. Принцип - это постоянно и последовательно применяемый метод.
Следовательно, по мере того как метод теряет свою альтернативность, становится все больше и больше преобладающим вариантом или даже единственным вариантом действий, тем меньше он метод и тем больше он принцип. Принцип мы не выбираем, мы ему следуем постоянно.
Известно, что принципы всеобщей связи и развития как основополагающие принципы диалектики в условиях подвергаются дальнейшему развитию и конкретизации в применении их к естествознанию и технике. Представляется, что для более плодотворного использования философских категорий, в том числе и принципов, необходимо, чтобы между ними и частными естественными и техническими знаниями (науками) находились связующие звенья. Одним из них и является системный анализ. Именно он и позволяет реализовать непосредственный кон-такт, стыковку философских положений и методов (принципов) конкретных наук.
1. Знание некоторых принципов легко возмещает незнание некоторых факторов (Клод Гельвеций (1715 - 1771) - французский философ-материалист)
2. В вопросе о системах нагромоздили столько ошибок лишь потому, что не вскрыли до-стоинств и недостатков этих принципов, на которых они покоятся (Этьен Бонно де Кон-дильяк (1715-1780) - французский философ-просветитель (Собрание сочинений: В 3 т. М., 1982.)).
Сначала системный анализ базировался главным образом на применении сложных математических приемов. Спустя некоторое время ученые пришли к выводу, что математика неэффективна при анализе широких проблем с множеством неопределенностей, которые характерны для исследования и разработки техники как единого целого. Об этом говорят многие ведущие специалисты-системщики. Поэтому стала вырабатываться концепция такого системного анализа, в котором делается упор на разработку новых диалектических принципов научного мышления, логического анализа сложных объектов с учетом их взаимосвязей и противоречивых тенденций.
Наиболее часто к системным причисляют следующие принципы:
1. конечной цели;
2. измерения;
3. эквифинальности;
4. единства;
5. связности;
6. модульного построения;
7. иерархии;
8. функциональности;
9. развития (историчности, открытости);
10. децентрализации;
11. неопределенности.
Принцип конечной цели.
Это абсолютный приоритет конечной (глобальной) цели. Принцип имеет следующие правила:
o для проведения СА необходимо, в первую очередь, сформулировать цели исследования;
o анализ следует вести на базе первоочередного уяснения основной цели (функции основного назначения) системы, что позволит определить ее основные существенные свойства, показатели качества и критерии оценки;
o при синтезе систем любая попытка изменения должна оцениваться относительно того, помогает или мешает она достижению конечной цели,
o цель функционирования искусственной системы задается, как правило, системой, в которой исследуемая система является составной частью.
Принцип измерения.
О качестве функционирования какой-либо системы можно судить только применительно к системе более высокого порядка. Т.е. для определения эффективности функционирования надо представить ее как часть более общей и проводить оценку внешних исследуемой системы относительно целей и задач надсистемы.
Принцип эквифинальности.
Система может достигнуть требуемого конечного состояния, независимо от времени и опре-деляемого исключительно собственными характеристиками системы при различных начальных условиях и различными путями. Это форма устойчивости по отношению к начальным и граничным условиям.
Принцип единства.
Это совместное рассмотрение системы как целого и как совокупность частей (элементов). Принцип ориентирован на «взгляд внутрь» системы, на расчленение ее с сохранением целост-ных представлений о системе.
Принцип связности.
Рассмотрение любой части совместно с ее окружением подразумевает проведение процедуры выявления связей между элементами системы и выявление связей (учет внешней среды). В соответствии с этим принципом систему, в первую очередь, следует рассматривать как часть (элемент, подсистему) другой системы, называемой подсистемой.
Принцип модульного построения.
Полезно выделение модулей в системе и рассмотрение ее как совокупности модулей. Принцип указывает на возможность вместо части системы исследовать совокупность ее входных и выходных воздействий (абстрагироваться от излишней детализации) (учебный план, модули).
Принцип иерархии.
Введение иерархии частей и их ранжирование упрощает порядок рассмотрения систем и, как следствие, разработку системы.
Принцип функциональности.
Совместное рассмотрение структуры и функций с приоритетом функций над структурой. Принцип утверждает, что любая структура тесно связана с функцией системы и ее частей. При придании системе новых функций полезно пересматривать ее структуру, а не пытаться втиснуть новую функцию в старую схему. Поскольку выполняемые функции составляют процессы, то целесообразно рассматривать отдельно: процессы, функции, структуры. В свою очередь, процессы сводятся к анализу потоков различных видов:
o материальный,
o энергии,
o информации (энтропия, негэнтропия), смена состояний.
С этой точки зрения структура есть множество ограничений на потоки в пространстве и во времени.
Принцип развития.
Это учет изменяемости системы, ее способности к развитию, адаптации, расширению, замене частей, накапливанию информации. В основу систематизированной системы требуется закладывать возможность развития, наращивания, усовершенствования.
Принцип децентрализации.
Это сочетание в сложных системах централизованного управления.
Принцип неопределенности.
Это учет неопределенностей и случайностей в системе.
Перечисленные принципы обладают очень высокой степенью общности. Для непосредственного применения исследователь должен наполнить их конкретным содержанием применительно к предмету исследования.
Каждая из перечисленных идей (принципов) при своем практическом осуществлении, даже отдельно взятая, может дать определенный эффект. Но эффект возрастает, если они применяются в комплексе. Тогда эти идеи превращаются в определенную систему принятия решений и управления, позволяющую более эффективно руководить сложными программами.
При этом процесс управления расчленяется на следующие элементы:
o выявление и обоснование конечных целей и уже на этом основании - промежуточных целей и задач, которые необходимо решать на каждом данном этапе;
o выявление и сведение в единую систему частей решаемой задачи, ее взаимосвязей с другими задачами и объектами, а также последствий принимаемых решений;
o выявление и анализ альтернативных путей решения задачи в целом и ее отдельных элементов (подзадач), сравнение альтернатив с помощью соответствующих критериев, выбор оптимального решения;
o создание (или усовершенствование) структуры организации, призванной обеспечить выполнение принимаемой программы, с тем, чтобы она с наибольшим эффектом обеспечивала реализацию принимаемых решений;
o разработка и принятие конкретных программ финансирования и осуществления работ - как долговременных, рассчитанных на весь срок, необходимый для реализации постав-ленных перед собой целей (этот план может быть и ориентировочным, своего рода прогнозом), так и средне- и краткосрочных.
Практическое выделение (образование) системы.
Во-первых, исходя из намеченных функций данной системы, вычленить (провести границу) из внешней (более общей) среды, назвав и определив ограничения и связи ее с внешней средой (окружением). Это - трудный и важный процесс, существенно влияющий на все последующие. Обратим внимание на многовариантность, неоднозначность выбора.
Во-вторых, четко определить функцию системы и в соответствии с ней проверить систему на полноту элементов, целостность, единство (все ли «винтики» и «детали» системы имеются) с позиции ее функционирования, и, в конечном счете - достижения желаемой цели. Нет ли лишних, дублирующих, несовместимых либо недостающих элементов и связей между ними.
В-третьих, построить (выявить, сконструировать) структуру системы, понимая при этом, что функция системы может реализоваться различными структурами.
В-четвертых, установить внутренние законы, по которым система существует и развивается. При этом система должна пониматься диалектически, т.е. в развитии и движении. Должна быть установлена связь законов функционирования внутри системы с законами функционирования системного окружения (среды и надсистемы).
Здесь уместно отметить, в какое смешное и жалкое положение попадают некоторые деятели, которые стремятся (или делают вид, что стремятся) управлять системой, не зная законов ее развития и существования внутри внешней среды.