Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Определение системы как семантической модели
Понятие семантической модели Пусть имеется два множества A и B, тогда функция f однозначно ставящая в соответствие каждому элементу называется отображением множества A на множество B, то есть . Элемент называется образом элемента a. Если существует , которое не является образом ни одного из элементов множества A, то преобразование f называется отображением множества A «в» B. Если f(A) = B , то отображение называется «на», A «на» B.
Множество, задаваемое функцией , которое включает, элементы множества A называются прообразом множества B. В общем случае может обеспечить неоднозначное преобразование. Отображение называется взаимнооднозначным, если каждому элементу множества A соответствует один элемент множества B и наоборот. Отображение A «в» B называется гомоморфизм, если выполняется условие . Изоморфизм – множество A «на» B является взаимнооднозначным гомоморфизмом, то есть , тогда семантическая модель представляет собой изоморфизм множества A в Ψ (пси), где A – фиксированное множество элементов исследуемой области с исследуемыми связями между ними. Пси определяется следующим набором:
,
где – множество элементов модели соответствующих элементам предметной области, носитель модели, – предикаты, характеризующие отношения между элементами предметной области. Предикат – это логическое выражение содержащие производное число аргументов и принимающее два значения, либо «истинное», либо «ложное». Пример: хороший студент Предикаты называются сигнатурой модели. Носитель модели является содержательной областью для предикатов. Выбор сигнатуры и носителя модели определяется рассматриваемой предметной областью.
Семантическая модель системы Рассмотрим модель системы с точки зрения возможности реализации процедур декомпозиции, анализа и синтеза. Модель рассматривается как отображение , тогда система определяется следующим набором:
, (1.1)
где - подмодель, характеризующая преобразование, реализуемое системой. Часто представляется при помощи «черного ящика», о котором известно, что определенный набор входных факторов приводит к определенному значению выходных факторов. - подмодель, характеризующая структуру системы при ее внутреннем рассмотрении. - предикат целостности, который характеризует семантику (смысл) подмоделей и , семантику преобразования и . Если =1 – это «истина», это означает, что подмодели и семантически связаны. Рассмотрим: ,
где - входные характеристики модели; - набор выходов модели; - характеризует состояние системы в определенный момент времени. Зная элемент z в определенный момент времени, можно определить значение элементов y.
f, g – это функционалы (глобальные уравнения системы) связывающие выход модели x и z, то есть они определяют текущие значения состояния системы и ее входных характеристик.
(1.2)
, (1.3)
Уравнение (1.2) называется уравнением наблюдения, (1.3) – уравнение состояние. Если систему удается описать при помощи формул, то она уже не рассматривается как «черный ящик». Однако часто это не удается. Помимо данных выражений система определяется тремя аксиомами: 1. Для каждой системы должно быть определено множество (пространство) Z возможных состояний, в которых может находиться система, а также параметры пространства T, в котором определено поведение системы. 2. Число элементов множества Z не должно быть меньше двух. 3. Система должна обладать свойством функциональной эмерджентности. Это свойство системы, которое принципиально не может быть выведено из свойств его отдельных элементов и подсистем данной системы. Таким образом, система может быть представлена в виде модели, которая включает подмодели и связи между ними.
Классификация систем Системы классифицируют: 1) По происхождению: a) естественные; b) искусственные. Социально-экономическая система – это объединение людей и машин, при реализации определенных функций связанных с достижением конкретных целей. 2) По объективности существования: a) материальные системы (существуют объективно не зависимо от нашего сознания); b) идеальные (складывается в сознании человека). 3) По взаимодействию с внешней средой: a) открытые; b) закрытые. Если каждый элемент системы имеет связи только с элементами подсистем данной системы, система называется закрытой. Если хотя бы один элемент имеет связь с внешней средой, то система является открытой. Закрытых систем на практике почти не бывает. Моделирование закрытой системы производится, когда необходимо исследовать поведение систем при обрыве внешних связей. Если при обрыве внешних связей или при резком изменении характеристик внешней среды показатели функциональной системы не выходят из допустимого интервала, то система называется слабозависящей от внешней среды. 4) По действию во времени: a) статические системы (не зависят от времени); b) динамические. На практике все системы являются динамические. 5) По обусловленности действия: a) детерминированные; b) вероятностные. В детерминированных системах характеристики изменяются по заранее известным законам. В вероятностных системах предсказать их поведение можно только с определенной степенью вероятности (математическая теория вероятности). 6) По степени сложности: a) сложные; b) особо сложные; c) простые. При этом учитывается иерархия системы, количество элементов и связей. Сложная система характеризуется: · целостностью реакции на внешнее воздействие; · большая размерность – это большое количество входов и выходов и сложный характер преобразований входных переменных в выходные; · сложный характер связей. Изменение любого из элементов оказывающих влияние на другие элементы.
Свойства систем Целостность – означает наличие некоторых общих целей у элементов системы. Также с данным понятием связаны симметрия и асимметрия, которые определяют степень соразмерности в пространстве и во времени связей между элементами. Неодетивность – это появление нового качества системы, которое вызвано эффектом объединения элементов, то есть сумма эффектов от реализации элементов отличающихся от эффекта реализации системы в целом. Эмерджентность – это появление новых свойств системы, которые не свойственны элементам системы. Синергизм – это получение дополнительного эффекта от согласованной и целенаправленной деятельности элементов системы. Проявлением является мультипликативный эффект, то есть суммарный эффект равен не сумме, а произведению эффектов функциональных элементов. Обособленность – это определенная изолированность системы от внешней среды. Согласованность – это наличие взаимосвязей элементов подсистем системы с элементами других систем. Также системы низкого уровня должны быть связаны с системами высокого уровня. Адаптивность – это способность системы подстраиваться под изменения внутренней и внешней среды.
Система с управлением |
Последнее изменение этой страницы: 2017-03-17; Просмотров: 1093; Нарушение авторского права страницы