Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Глава 6. Регуляция генной активности.



Генетический код

Итак, каждая аминокислота в белке опосредованно детерминируется определённым кодоном (группой из 3 оснований) в мРНК и в конечном счёте в ДНК. Поскольку в нуклеиновых кислотах имеется четыре вида оснований, число возможных кодонов составляет . Соответствие между кодонами и аминокислотами, которые они кодируют, называется генетическим или биологическим кодом. Это соответствие было установлено опытным путём: к разрушенным клеткам добавляли синтетические полинуклеотиды известного состава и смотрели, какие аминокислоты включаются в белки. Позднее появилась возможность прямо сравнить последовательности аминокислот в вирусных белках и оснований в вирусных нуклеиновых кислотах. Чрезвычайно интересно, что генетический код, за редкими исключениями, одинаков для всех организмов – от вирусов до человека. Одно из таких исключений составляют изменения в генетическом коде, используемом митохондриями. Митохондрии – это небольшие автономные субклеточные частицы (органеллы), присутствующие во всех клетка, кроме бактерий и зрелых эритроцитов. Предполагают, что когда-то митохондрии были самостоятельными организмами; проникнув в клетки, они со временем стали их неотъемлемой частью, но сохранили некоторое количество собственной ДНК и синтезируют несколько митохондриальных белков.

Аланин Аргинин Аспарагин Аспарагиновая кислота
ГЦУ ЦГУ ГАУ ААУ
ГЦЦ ЦГЦ ГАЦ ААЦ
ГЦА ЦГА    
ГЦГ ЦГГ    
  АГА    
  АГГ    
Валин Гистидин Глицин Глутаминовая кислота
ГУУ ЦАУ ГГУ ЦАА
ГУЦ ЦАЦ ГГЦ ЦАГ
ГУА   ГГА  
ГУГ   ГГГ  
Глутамин Изолейцин Лейцин Лизин
ГАА АУУ УУА ААА
ГАГ АУЦ УУГ ААГ
  АУА ЦУУ  
    ЦУЦ  
    ЦУА  
    ЦУГ  
Метионин Пролин Серин Тирозин
АУГ ЦЦУ АГУ УАУ
  ЦЦЦ АГЦ УАЦ
  ЦЦА УЦА  
  ЦЦГ УЦГ  
    УЦУ  
    УЦЦ  
Треонин Триптофан Фенилаланин
Цистеин Нет
АЦУ УГГ УУУ
УГУ УАА

 

АЦЦ   УУЦ
УГЦ УАГ

 

АЦА    
  УГА

 

АЦГ    
   

 

ГЕНЕТИЧЕСКИЙ СЛОВАРЬ: указаны аминокислоты, встречающиеся в белках, и соответствующие им кодоны в мРНК. «Буквы» в кодонах записаны в направлении В этом же направлении идут транскрипции нуклеиновых кислот и синтез белка на матрице. «Нет» означает, что кодон не кодирует никаких аминокислот; такие кодоны называются «бессмысленными». Генетический словарь одинаков для всех живых организмов – от вирусов до человека.

 

Вообще говоря, каждой аминокислоте соответствует более одного кодона. Большинство кодонов, кодирующих одну и ту же аминокислоту, имеют два одинаковых первых основания, но в трёх случаях (для лейцина, серина и аргинина) имеются два альтернативных набора первых дублетов в кодонах, соответствующих одной и той же аминокислоте. Природа основания в третьем положении не столь важна; одна и та же аминокислота – глицин – может кодироваться по-разному: ГГУ, ГГЦ, ГГА и ГГГ. Однако кодоны для двух разных аминокислот могут иметь два одинаковых первых основания, и тогда различие между ними будет определяться природой третьего основания – пурином или пиримидином. Так, гистидин кодируется триплетами ЦАУ и ЦАЦ, а глутамин ЦАА и ЦАГ. Три кодона, УАА, УАГ и УГА, не кодируют никаких аминокислот и называются «бессмысленными».

Одна молекула ДНК кодирует много белковых цепей. Каждый отрезок, кодирующий одну цепь, называют цистроном. Начало и конец цистрона, а также граница раздела между ними помечаются с помощью своего рода знаков химической пунктуации. По крайней мере у бактерий в начале цистрона находится метиониновый кодон АУГ. Логично предположить, что первой аминокислотой в белке всегда должен быть метионин, но часто несколько первых аминокислот отщепляются ферментативно после окончания синтеза белка. Конец белковой цепи помечается одним или несколькими «бессмысленными» кодонами.

У бактерий (прокариот) практически вся ДНК кодирует какие-либо белки или тРНК. Однако у высших форм (эукариот) значительная часть ДНК состоит из простых повторяющихся последовательностей и «молчащих» генов, которые не транскрибируются в РНК и поэтому не транслируются в белки. Кроме того, исходно синтезированная мРНК содержит участки, не детерминирующие никаких белковых последовательностей. Такие участки (интроны), расположенные между кодирующими участками (экзонами), перед началом синтеза белка удаляются специальными ферментами. Почему в ДНК существуют эти казалось бы бесполезные сегменты – неясно; возможно, они выполняют регуляторные функции.

У простейшей Tetrahymena РНК сама удаляет свои интроны и соединяет свободные концы цепей, действуя как фермент по отношению к себе самой. Это единственное известное исключение из правила, согласно которому нуклеиновые кислоты не обладают ферментативной активностью.

 


Поделиться:



Последнее изменение этой страницы: 2017-03-17; Просмотров: 364; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.012 с.)
Главная | Случайная страница | Обратная связь