|
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Понятие о движении тела с одной неподвижной точкой (сферическое движение)
6.4.1. Описание (задание) движения На рис.60 изображено несколько тел, совершающих такое движение. Так на рис.60.а тело прикреплено к неподвижной опорной поверхности шаровым шарниром, на рис.60.б изображен двухстепенной гироскоп, а на рис.60.в – конус, катящийся по плоскости без проскальзывания.
Так как расстояние между неподвижной точкой тела и любой другой остается неизменным в силу его абсолютной твердости, траектория движения любой точки лежит на сфере, радиус которой равен этому расстоянию. Отмеченная особенность и определила название движения как сферическое. Этот тип движения тесно связан с ранее рассмотренным случаем вращения тела вокруг неподвижной оси, так как сферическое движение может быть представлено в виде непрерывной последовательности малых (элементарных) поворотов вокруг перемещающейся в пространстве оси. Эта ось называется мгновенной осью вращения тела. Скорости всех точек мгновенной оси равны нулю. Часто положение этой оси и ее движение очевидны. Так, для изображенного на рис.60.в конуса, катящегося без проскальзывания по неподвижной плоскости, мгновенной осью будет линия их соприкосновения; в процессе движения конуса эта ось вращается вокруг вертикальной оси Отличительная особенность этого подхода заключается в том, что понятие суммарного угла поворота лишается обычного смысла, так как элементарные повороты происходят вокруг различных положений мгновенной оси. При таком подходе, как и в пункте 6.2.1, можно ввести в рассмотрение вектор
и вектор углового ускорения
Первая из компонент вектора Тогда Рассмотренный подход позволяет для вычисления локальных характеристик использовать полученные ранее формулы (44) и (45):
При этом последнее слагаемое называется осестремительной составляющей ускорения, а два первых – параллельной и перпендикулярной вращательной составляющими. В наиболее общем случае сферическое движение тела с тремя степенями свободы описывается (задается) тремя обобщенными координатами, называемыми углами Эйлера. В настоящем курсе этот подход не обсуждается. ПРИМЕР 23. Коническое зубчатое колесо радиуса
РЕШЕНИЕ. Угловая скорость прецессии колеса
При движении колеса вектор мгновенной угловой скорости поворачивается вокруг вертикальной оси, образуя коническую поверхность с углом при вершине ( Вектор углового ускорения приложен в точке О и направлен на нас перпендикулярно плоскости рисунка. Модуль углового ускорения равен
Осестремаительная составляющая ускорения точки А направлена от точки к мгновенной оси (см. рисунок), а ее модуль равен
Вращательная составляющая ускорения, равная
Обе компоненты ускорения лежат в плоскости рисунка и составляют между собой угол (
Рассмотрим теперь более общий случай, когда вращение конического колеса вокруг вертикальной оси ускоренное (в этом случае полагаются известными величины угловой скорости Если в рамках предыдущих исходных данных параллелограмм угловых скоростей равномерно вращался вокруг вертикальной оси без изменения размеров своих сторон, то в рассматриваемом случае, во-первых, вращение будет ускоренным, и, во-вторых, стороны будут возрастать, сохраняя при этом выведенные ранее соотношения. Так же остаются справедливыми формулы для расчета Продифференцировав формулу для расчета угловой скорости, получим:
Тогда вектор
Вопросы и задачи для самоконтроля 1. Дайте определение поступательного движения тела. Что можно сказать о траекториях, скоростях и ускорениях точек при таком движении тела? 2. Может ли быть окружность траекторией движения точек тела при поступательном движении? Каким будет движение подвесной кабины колеса обозрения? 3. Что можно сказать о глобальных и локальных кинематических характеристиках при поступательном движении тела? 4. Дайте определение вращательного движения тела. Сколько степеней свободы имеет тело в этом случае? Каковы его глобальные характеристики? Может ли ось вращения быть вне границ тела? 5. Как связаны величины локальных и глобальных кинематических характеристик при вращательном движении? Запишите формулы для величин скорости, осестремительной и вращательной составляющих ускорения точки, полного ускорения точки. 6. Как связаны векторы локальных и глобальных кинематических характеристик? Запишите формулы для векторов скорости, осестремительной и вращательной составляющих ускорения точки. 7. Что можно сказать о скоростях в точках контакта элементов, образующих простейшие механические передачи? 8. Найти угловую скорость
Лекция 7 |
Последнее изменение этой страницы: 2017-04-12; Просмотров: 812; Нарушение авторского права страницы