Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Роль биотехнологии в современной фармации. Определение понятия биотехнологии.



Современный провизор должен знать биотехнологию в рамках своей профессии, работая на отечественном рынке лекарственных средств, тесно интегрированным с мировым производством лекарственных препаратов.

Номенклатура лекарственных препаратов, полученных на основе биообъектов в силу объективных причин имеет тенденцию к своему расширению. В категорию таких лекарственных препаратов входят:

1. лекарственные средства для лечения, в число которых входят аминокислоты и препараты на их основе, антибиотики, ферменты, коферменты, кровезаменители и плазмозаменители, гормоны стероидной и полипептидной природы, алкалоиды;

2. профилактические средства, в число которых входят вакцины, анатоксины, интерфероны, сыворотки, иммуномодуляторы, нормофлоры;

3. диагностические средства, в число которых входят ферментные и иммунные диагностикумы, препараты на основе моноклональных антител и иммобилизованных клеток.

Это далеко не полный перечень лекарственных препаратов, которые имеются в современной фармации, в основе производства которых используются биообъекты. Что касается определения самого понятия биотехнологии, то оно следует из понятия самой технологии. Технология – это наука о развитии естественных процессов в искусственных условиях. Если эти процессы относятся к биосинтетическим или биокаталитическим, присущих клеткам прокариот и эукариот, когда в качестве элементной базы используются биообъекты для получения целевого (конечного) продукта, то такое производство называют биотехнологическим. Если же в роли целевого (конечного) продукта выступает лекарственное средство, то такая биотехнология называется «биотехнология лекарственных средств».

Общепризнано, что содержанием биотехнологии является использование достижений фундаментальных биологических наук в практических целях. Четверть века назад Европейская федерация по биотехнологии выдвинула следующий тезис: «Биотехнология — применение биологических систем и процессов в промышленности и сфере услуг», не подчеркнув научное содержание биотехнологии; кроме того, слишком широким представляется понятие «сфера услуг». На одном из конгрессов 10 лет спустя было дано более подробное определение: «Биотехнология — это наука об основах реализации процессов получения с помощью биокатализаторов разных продуктов и об использовании таких процессов при защите окружающей среды», все же неоправданно сужающее ее возможности.

В некоторых учебных пособиях биотехнология трактуется как «направление научно-технического прогресса, использующее биологические процессы и агенты для целенаправленного воздействия на природу, а также в интересах промышленного получения полезных для человека продуктов, в частности лекарственных средств».

Из этого и предыдущих определений следует, что биотехнология — и наука, и сфера производства. Она включает разделы энзимологии, промышленной микробиологии, прикладной биохимии, медицинской микробиологии и биохимии, а также разделы, связанные с конструированием заводского оборудования и созданием специализированных поточных линий.

В настоящее время фармацию характеризует как минимум третья часть лекарственных средств от общего объема производимых лекарств, которая использует современные биотехнологии. Суммируя все позиции определения биотехнологии, указанные выше, можно сказать, что « Биотехнология – это направление научно-технического прогресса, использующее биологические процессы и агенты для целенаправленного воздействия на природу, а также для промышленного получения полезных для человека продуктов, в том числе лекарственных средств».

Биотехнология использует либо продуценты – микроорганизмы, растения, высшие животные, либо использует изолированные индивидуальные ферменты. Фермент иммобилизируется (закрепляется) на нерастворимом носителе, что позволяет его использовать многократно.

Современная биотехнология использует такие достижения, как искусственные культуры клеток и тканей. Особое достижение биотехнологии – это генно-инженерные продуценты, микроорганизмы, имеющие рекомбинантные ДНК. Ген четко изолируется и вводится клеткам микроорганизма. Этот микроорганизм будет продуцировать вещество, структура которого закодирована во введенном гене.

2. Краткая историческая справка по развитию биотехнологии в мире.

В истории развития биотехнологии можно выделить три основных периода:

1. эмпирическая биотехнология (тысячелетия). Самый первый биотехнологический процесс, осуществленный человеком – получение пива, был изобретен шумерами приблизительно 5 тысяч лет назад;

2. научная биотехнология (с Пастера);

3. современная биотехнология (молекулярная).

Последний специально отделяется от предыдущего, так как биотехнологи уже могут создавать и использовать в производстве неприродные организмы, полученные генно-инженерными методами.

1) Эмпирическая биотехнология неотделима от цивилизации, преимущественно как сфера производства (с древнейших времен — приготовление теста, получение молочнокислых продуктов, сыро-, виноделие, пивоварение, ферментация табака и чая, выделка кож и обработка растительных волокон). В течение тысячелетий человек применял в своих целях ферментативные процессы, не имея понятия ни о ферментах, ни о клетках с их видовой специфичностью и, тем более, генетическим аппаратом. Причем прогресс точных наук долгое время не влиял на технологические приемы, используемые в эмпирической биотехнологии.

2) Быстрое развитие биотехнологии как научной дисциплины с середины XIX в. было инициировано работами Л. Пастера (1822 — 1895).

Именно Л.Пастер ввел понятие биообъекта, не прибегая, впрочем, к такому термину, доказал «живую природу» брожений: каждое осуществлявшееся в производственных условиях брожение (спиртовое, уксусно-, молочнокислое и т.д.) вызывается своим микроорганизмом, а срыв производственного процесса обусловлен несоблюдением чистоты культуры микроорганизма, являющегося в данном случае биообъектом.

Практическое значение этих исследований Л. Пастера сводится к требованию поддержания чистоты культуры, т.е. к проведению производственного процесса с индивидуальным, имеющим точные характеристики биообъектом.

Позднее, приступив к работам в области медицины, Л. Пастер исходил из своей концепции о причине заразных болезней, сводя ее в каждом случае к конкретному, определенному микроорганизму. Хотя техника того времени не позволяла увидеть возбудителя инфекции, как, например, в случае вируса бешенства, однако Л.Пастер считал, что «мы его не видим, но мы им управляем». Целенаправленное воздействие на возбудителя инфекции (в целях ослабления его патогенности) позволяет получать вакцины.

Ослабленный патоген и животное, в организм которого он введен, могут рассматриваться как своеобразный биообъект, а получаемая вакцина - как биотехнологический препарат. Л. Пастер создал строго научные основы получения вакцин, тогда как замечательные достижения Э. Дженнера в борьбе с оспой были результатом освоения эмпирического опыта индийской медицины.

3) Современная биотехнология, основанная на достижениях молекулярной биологии, молекулярной генетики и биоорганической химии (на практическом воплощении этих достижений), выросла из биотехнологии Л.Пастера и, являясь также строго научной, отличается от последней прежде всего тем, что способна создавать и использовать в производстве неприродные биообъекты, что отражается как на производственном процессе в целом, так и на свойствах новых биотехнологических продуктов.

Говоря о биотехнологии, нельзя не упомянуть публикацию в 1953 г. первого сообщения о двуспиральной структуре ДНК, ставшего основополагающим для возникновения указанных фундаментальных дисциплин, достижения которых реализуются в современной биотехнологии.

В результате серий публикаций в 1960-х гг. в литературу были внедрены принципиально важные для биотехнолога понятия «оперон» и «структурный ген».

В 1973 г. было опубликовано сообщение об успешном переносе генов из одного организма в другой — в сущности, уже о технологии рекомбинантной ДНК, определяющей возникновение генетической инженерии.

В 1980 г. Верховный суд США признал, что генно-инженерные микроорганизмы могут быть запатентованы, а развитие биотехнологических методов получило юридический статус.

В 1990 г. произошли два принципиально важных события: была разрешена генотерапия (но только применительно к соматическим клеткам человека, т.е. без передачи чужого гена потомству) и утвержден международный проект «Геном человека». Образно говоря, человеку было юридически разрешено познавать свою сущность.

В настоящее время интенсивно растет количество таких успешно применяемых в медицине биотехнологических продуктов, как рекомбинантные белки, вторичные метаболиты микроорганизмов и растений, а также полусинтетических лекарственных агентов, являющихся продуктами одновременно био- и оргсинтеза.

В последние годы родилась новая отрасль генетики - геномика, изучающая не отдельные гены, а целые геномы. Достижения молекулярной биологии и генной инженерии дали человеку возможность читать генетические тексты вначале вирусов, бактерий, дрожжевых грибков, многоклеточных животных. Например, знание геномной структуры патогенных бактерий очень важно при создании рационально сконструированных вакцин, для диагностики и других медицинских целей.

Апрель 2003 года ознаменовался сенсацией в биологии и медицине: Международный консорциум по составлению генетической карты человека (Центр геномного секвенирования: Вашингтонский университет и Сенгеровский центр в Кембридже) опубликовал заявление, что удалось полностью расшифровать геном человека. Титанический труд сотен исследователей из США, Великобритании, Германии, Франции, Японии и Китая занял более 10 лет и обошелся почти в 3 млрд. долларов. При этом были разработаны высокоэффективные технологии и инструменты картирования, такие как коллекции клеток, в которых есть небольшие фрагменты каждой из хромосом или искусственные дрожжевые хромосомы, содержащие крупные фрагменты хромосом человека, бактериальные и фаговые векторы, позволяющие размножить (клонировать) фрагменты ДНК человека. Быстро прогрессировала техника секвенирования (например, многоканальный капиллярный электрофорез ускорил и удешевил расшифровку первичной структуры ДНК). Созданы компьютерные программы, позволяющие находить гены в расшифрованных участках ДНК.

Биотехнологию можно условно разделить на три категории по получаемым продуктам:

1. природные биотехнологические продукты, вырабатываемые собственно микроорганизмами (например, антибиотики);

2. биотехнологические продукты второго поколения, полученные с помощью генно-инженерных штаммов (например, человеческий инсулин);

3. биотехнологические продукты третьего поколения – продукция XXI века, основана на изучении взаимодействия биологически активных веществ и рецепторов клеток и создании принципиально новых препаратов. Примером таких препаратов могут быть антисмысловые нуклеиновые кислоты. В клетке человека приблизительно 100 тысяч генов. Используя принцип комплементарности можно создать цепь нуклеиновых кислот, которые могут выключать тот или иной ген, что позволяет с помощью антисмысловых нуклеиновых кислот управлять генами, корректируя обмен.


Поделиться:



Последнее изменение этой страницы: 2017-04-12; Просмотров: 945; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.019 с.)
Главная | Случайная страница | Обратная связь