Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Вакцинация. Типы вакцин: живые,убитые , субъединичные, ДНК-вакцины.
Вакци́ на — медицинский или ветеринарный препарат, предназначенный для создания иммунитета устойчивого к инфекционным болезням. Живые вакцины изготовляют на основе ослабленных штаммов микроорганизма со стойко закрепленной авирулентностью. Вакцинный штамм после введения размножается в организме привитого и вызывает вакцинальный инфекционный процесс. Приводит к формированию стойкого иммунитета. Примером живых вакцин могут служить вакцины для профилактики краснухи, кори, полиомиелита, туберкулеза, паротита. Неживые вакцины обычно проявляют меньшую (по сравнению с живыми вакцинами) иммуногенность, что диктует необходимость многократной иммунизации. В то же время неживые вакцины лишены балластных веществ, что значительно уменьшает частоту побочных эффектов, часто развивающихся после иммунизации живыми вакцинами. Компонентные (субъединичные) вакцины — разновидность корпускулярных неживых вакцин; они состоят из отдельных антигенных компонентов, способных обеспечить развитие невосприимчивости. В качестве Аг применяют иммуногенные компоненты возбудителя. Для их выделения используют различные физико-химические методы, поэтому препараты, получаемые из них, также известны как химические вакцины. В настоящее время разработаны субъединичные вакцины против пневмококков, брюшного тифа, сибирской язвы, гриппа (вирусные нейраминидазы и гемагглютинин). ДНК-вакцины обычно содержит плазмидуE.coli с сильным промотором и репортерный ген. Плазмидаамплифицируется обычно в E.coli, очищается, суспендируется в буферном растворе, а затем просто вводится в организм. Иммунизация ДНК имеет некоторые преимущества перед иммунизацией очищенными вирусными антигенами: вирусные антигены могут экспрессироваться на поверхности клеток и представляться иммунной системе в нативном виде; у таких вакцин есть способность трансфицировать клетки без интерференции с вирусными антителами; антигены могут экспрессироватьсяinvivo в течение нескольких месяцев после ДНК-иммунизации.Преимущества ДНК-вакцин заключаются в чистоте, физико-химической стабильности, относительно низкой стоимости производства, простоте доставки, включении в одну плазмиду генов, кодирующих множество антигенов. Химические антивирусные средства и механизм их действия. Интерфероны Интерфероны. Интерфероны—ряд белков со сходными свойствами, выделяемых клетками организма в ответ на вторжение вируса. Благодаря интерферонам, клетки становятся невосприимчивыми по отношению к вирусу.
Закономерности роста бактериальных культур при периодическом и непрерывном культивировании. При периодическом способе культивирования популяция микроорганизмов проходит 7 стадий (фаз) роста. 1. Лагфаза. Культура адаптируется к новой среде обитания. Активизируются ферментные системы, возрастает количество нуклеиновых кислот, клетка готовится к интенсивному синтезу белков и других соединений. Клетки не размножаются (скорость размножения равна нулю). Концентрация живых клеток постоянна и равна количеству внесенных клеток. Продолжительность этой фазы зависит от физиологических особенностей микроорганизма и от состава питательной среды. 2. Фаза ускорения роста. Начало деления клеток, увеличение общей массы и постоянное увеличение скорости роста культуры. Эта фаза обычно непродолжительна. 3. Экспоненциальная (логарифмическая) фаза роста. Размножаются с постоянной максимальной скоростью. При этом логарифм числа клеток линейно зависит от времени. К концу этой фазы среда истощается вследствие катаболических и анаболических процессов, в среде накапливаются продукты жизнедеятельности микроорганизмов. Возникает и пространственная ограниченность, так как клетки мешают друг другу. 4. Фаза замедления роста. В этот период снижается скорость роста, небольшая часть клеток гибнет. Скорость роста выше скорости отмирания. 5. Стационарная фаза. Количество живых клеток достигает максимума. Скорость роста равна скорости отмирания клеток, поэтому концентрация жизнеспособных клеток остается постоянной. 6. Фаза ускорения отмирания. Количество отмерших клеток (скорость отмирания) становится больше количества образовавшихся клеток. 7. Фаза отмирания. Масса живых клеток значительно уменьшается, так как в среде нет питательных веществ, а запасные вещества клетки исчерпываются. При непрерывном способе культивирования культура поддерживается в какой-то фазе роста. Если цель культивирования – получение биомассы продуцента, процесс целесообразно вести в режиме логарифмической фазы, когда микроорганизм способен обеспечить максимальную скорость роста популяции. Для поддержания культуры в логарифмической фазе культивирование микробной популяции проводят в условиях хемостата или турбидостата. Рост в хемостате. Хемостат состоит из сосуда, в который вводят с постоянной скоростью питательный раствор. По мере поступления питательного раствора из него вытекает суспензия микроорганизмов с той же скоростью. При культивировании в условиях хемостата поддерживается постоянная концентрация одного из компонентов среды (например, углерода). Благодаря этому в условиях хемостата поддерживается постоянная скорость роста культуры. Культура микроорганизма находится в условиях динамического равновесия. Рост в турбидостате. Работа турбидостата основана на поддержании постоянной концентрации живых клеток. В сосуде для культивирования все питательные вещества содержатся в избытке, а скорость роста бактерий приближается к максимальной. Если же целью культивирования является получение метаболита (например, этилового спирта), выход которого в среду обитания не соответствует логарифмической фазе роста, применяется способ непрерывного выращивания в двух или нескольких последовательно соединенных аппаратах, что позволяет как бы расчленить процесс на несколько стадий. 16. Строение, химический состав и функции основных структурных компонентов бактериальной клетки. клетка имеет цитоплазму, которая окружена цитоплазматической мембраной. Цитоплазма и цитоплазматическая мембрана составляют протопласт, снаружи от него расположены поверхностные структуры. К их числу относятся клеточная стенка, капсулы, чехлы, слизистые слои, жгутики, ворсинки и т. д. Клеточная стенка Клеточная стенка является обязательным структурным элементом бактериальной клетки, исключение составляют микоплазмы и L-формы. Основным компонентом клеточной стенки является муреин. Муреин – гетерополимер, построенный из цепочек, в которых чередуются остатки N-ацетилглюкозамина и N-ацетилмурамовой кислоты, соединенные между собой β -1, 4-гликозидными связями. Такие неразветвленные гетерополимерные цепи образуют основу муреина. Остатки N-ацетилмурамовой кислоты через лактильные группы соединены пептидной связью с аминокислотами. К типичным аминокислотам, обнаруженным в составе муреина, относятся L-аланин, D-глутаминовая кислота, мезо-диаминопимелиновая кислота и D-аланин. У некоторых бактерий вместо мезо-диаминопимелиновой кислоты встречаются L-лизин, Мезо-диаминопимелиновая кислота, L-лизин или другие диаминокислоты играют большую роль в формировании межмолекулярных сшивок, так как в образовании пептидных связей могут принимать участие обе аминогруппы, и таким образом между собой связываются две гетерополимерные цепи муреина. Благодаря пептидным связям гетерополимерные цепи связаны между собой и образуют муреиновый мешок, который выполняет функцию опорного каркаса клеточной стенки. Следует отметить, что особенностью клеточных стенок бактерий по сравнению с клетками эукариот является наличие в них особых структурных элементов: • чередующихся последовательностей N-ацетилглюказамина и N-ацетилмурамовой кислоты; • наличие мезо-диаминопимелиновой кислоты, D-форм аланина и глутаминовой кислоты. Эти структурные элементы составляют ахиллесову пяту бактерий, используемую врачами в борьбе с инфекцией. Для борьбы с инфекцией бактериальной этиологии применяют лекарственные препараты, специфически воздействующие только на клеточные стенки бактерий или на процесс их синтеза, но не на клетки растений, животных и человека. Химический состав и строение клеточной стенки постоянны для определенного вида бактерий и являются важным диагностическим признаком, который используется для идентификации бактерий. В зависимости от строения клеточной стенки бактерии делятся на две большие группы: грамположительные и грамотрицательные. Существует метод окраски, позволяющий разделить бактерии на эти две группы. Этот метод основан на различной способности микроорганизмов удерживать в клетке красители трифенилметанового ряда – кристаллический фиолетовый или генциановый фиолетовый, что в свою очередь зависит от химического состава и ультраструктуры клеточной стенки бактерий. Клеточная стенка грамположительных бактерий под электронным микроскопом выглядит как гомогенный плотный слой, Муреин в клеточной стенке грамположительных бактерий составляет 50–90 % ее сухой массы. С муреином связаны тейхоевые кислоты – полимеры, образованные остатками спирта рибита или глицерина, связанными фосфодиэфирными мостиками, обнаружены полисахариды, белки и липиды. |
Последнее изменение этой страницы: 2017-04-13; Просмотров: 847; Нарушение авторского права страницы