Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Свободные гармонические колебания в колебательном контуре



Среди различных электрических явлений особое место занимают электромагнитные колебания, при которых электрические величины (заряды, токи) периодически изменя­ются и которые сопровождаются взаимными превращениями электрического и магнит­ного полей. Для возбуждения и поддержания электромагнитных колебаний использует­ся колебательный контур — цепь, состоящая из включенных последовательно катушки индуктивностью L, конденсатора емкостью С и резистора сопротивлением R.

Рассмотрим последовательные стадии колебательного процесса в идеализирован­ном контуре, сопротивление которого пренебрежимо мало Для возбуждения в контуре колебаний конденсатор предварительно заряжают, сообщая его обкладкам заряды Тогда в начальный момент времени t—О (рис. 202, а) между обкладками

конденсатора возникнет электрическое поле, энергия которого (см. (95.4)). Если

замкнуть конденсатор на катушку индуктивности, он начнет разряжаться, и в контуре потечет возрастающий со временем ток I. В результате энергия электрического поля будет уменьшаться, а энергия магнитного поля катушки (она равна ) — воз-

растать.

Так как то, согласно закону сохранения энергии, полная энергия

так как она на нагревание не расходуется. Поэтому в момент когда конден-

сатор полностью разрядится, энергия электрического поля обращается в нуль, а энер­гия магнитного поля (а следовательно, и ток) достигает наибольшего значения (рис. 202, б). Начиная с этого момента ток в контуре будет убывать; следовательно, начнет ослабевать магнитное поле катушки, и в ней индуцируется ток, который течет (согласно правилу Ленца) в том же направлении, что и ток разрядки конденсатора. Конденсатор начнет перезаряжаться, возникнет электрическое поле, стремящееся осла­бить ток, который в конце концов обратится в нуль, а заряд на обкладках конденсатора


достигнет максимума (рис. 202, в). Далее те же процессы начнут протекать в обратном направлении (рис. 202, г) и система к моменту времени придет в первоначальное состояние (рис. 202, а). После этого начнется повторение рассмотренного цикла разряд­ки и зарядки конденсатора. Если бы потерь энергии не было, то в контуре совершались бы периодические незатухающие колебания, т. е. периодически изменялись (колеба­лись) бы заряд Q на обкладках конденсатора, напряжение U на конденсаторе и сила тока I, текущего через катушку индуктивности. Следовательно, в контуре возникают электрические колебания, причем колебания сопровождаются превращениями энергий электрического и магнитного полей.

Электрические колебания в колебательном контуре можно сопоставить с механи­ческими колебаниями маятника (рис. 202 внизу), сопровождающимися взаимными превращениями потенциальной и кинетической энергий маятника. В данном случае энергия электрического поля конденсатора аналогична потенциальной энер-

гии маятника, энергия магнитного поля катушки — кинетической энергии, сила

тока в контуре — скорости движения маятника. Индуктивность L играет роль массы т, а сопротивление контура — роль силы трения, действующей на маятник.

Согласно закону Ома, для контура, содержащего катушку индуктивностью L, конденсатор емкостью С и резистор сопротивлением R,

В данном колебательном контуре внешние э.д.с. отсутствуют, поэтому рассмат-

262


риваемые колебания представляют собой свободные колебания (см. § 140). Если со­противление R=0, то свободные электромагнитные колебания в контуре являются гармоническими. Тогда из (143.2) получим дифференциальное уравнение свободных гармонических колебаний заряда в контуре:

Из выражений (142.1) и (140.1) вытекает, что заряд Q совершает гармонические колебания по закону

где — амплитуда колебаний заряда конденсатора с циклической частотой называемой собственной частотой контура, т. е.

и периодом

Формула (143.5) впервые было получена У. Томсоном и называется формулой Томсона. Сила тока в колебательном контуре (см. (140.4))

где — амплитуда силы тока. Напряжение на конденсаторе

где — амплитуда напряжения.

Из выражений (143.3) и (143.6) вытекает, что колебания тока / опережают по фазе колебания заряда Q на т. е., когда ток достигает максимального значения, заряд (а также и напряжение (см. (143.7)) обращается в нуль, и наоборот.


Поделиться:



Последнее изменение этой страницы: 2017-05-04; Просмотров: 297; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.009 с.)
Главная | Случайная страница | Обратная связь