Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Приведение сил инерции для различных видов движения



В случае поступательного движения тела силы инерции, действующие на его точки, образуют систему параллельных сил, так как ускорения всех точек тела равны по величине и направлению, например, ускорению центра масс тела - . Система параллельных сил эквивалентна одной силе (равнодействующей), которая равна сумме всех сил системы и приложена в центре масс тела. В случае поступательного движения силы инерции приводятся к одной силе:

.

В случае вращательного движения тела, обладающего плоскостью материальной симметрии, вокруг оси, перпендикулярной этой плоскости и проходящей через центр масс тела, силы инерции могут быть приведены к паре сил с моментом, равным главному моменту сил инерции относительно оси вращения:

.

Учитывая, что: , находим, что в этом случае силы инерции могут быть приведены к паре сил, с моментом, равным главному моменту сил инерции относительно оси вращения:

.

В случае когда ось вращения Oz не проходит через центр масс тела, силы инерции приводятся к силе , приложенной в точке О, и паре сил с моментом , лежащей в плоскости симметрии тела.

Приплоскомдвижении тела, имеющего плоскость симметрии и движущегося параллельно этой плоскости, силы инерции приводятся к силе, приложенной в центре масс тела и равной главному вектору сил инерции , и паре сил с моментом, равным главному моменту сил инерции относительно оси, проходящей через центр масс:

.

 

Принцип возможных перемещений

Определение: возможным называется бесконечно малое перемещение системы, которое допускают наложенные на нее связи. На рис. 27 показано возможное перемещение системы.

 

Направление возможных перемещений совпадает с направлением скоростей точек и угловых скоростей звеньев механизма. Перемещение из положения ОАВ в положение ОА1В1 не является возможным, так как оно конечное.

Определение: связь называется идеальной, если работа ее реакции на любом возможном перемещении равна нулю (например, гладкая поверхность).

Для равновесия системы с идеальными двухсторонними связями необходимо и достаточно, чтобы сумма работ активных сил, действующих на нее, на любом возможном перемещении равнялась нулю:

. (53)

Общее уравнение динамики

Если к активным силам, действующим на систему с идеальными связями добавить силы инерции, то сумма работ этих сил на любом возможном перемещении будет равна нулю:

. (54)

Общее уравнение динамики является суммой двух принципов: принципа Даламбера и принципа возможных перемещений. Действительно, если к неуравновешенной системе сил, действующей на механическую систему, добавить силы инерции, то согласно принципу Даламбера такая система сил будет уравновешенной и, следовательно, согласно принципу возможных перемещений

. (55)

Но, поскольку связи, наложенные на систему, являются идеальными, то сумма работ их реакций на любом возможном перемещении равна нулю: . С учетом этого формула (55) примет вид (54).

 

Уравнение Лагранжа II рода

Уравнение Лагранжа II рода имеет вид:

, i = 1, …, n. (57)

Здесь обозначено: T – кинетическая энергия системы; – соответственно обобщенная скорость и обобщенная координата. Скорость и координата называются обобщенными, поскольку могут быть как линейными, так и угловыми. - обобщенная сила ( может быть как силой, так и моментом); n – число степеней свободы системы. число степеней свободы системы с геометрическими связями (геометрическими называют связи, которые налагают ограничения на положение точек системы) равно числу независимых координат, с помощью которых можно однозначно определить положение системы. В общем случае точка системы может иметь бесконечное число возможных перемещений, но всегда найдется несколько возможных перемещений, через которые можно линейно выразить все остальные. Именно они и называются независимыми. Например, любое перемещение точки на плоскости можно выразить через два перемещения, соответствующие координатам x и y. Таким образом, точка на плоскости имеет две степени свободы. Вращающееся тело имеет одну степень свободы, так как его положение можно однозначно определить, задав всего одно перемещение – угол поворота. Обобщенную силу находят по формуле:

,

где - работа сил, действующих на систему на возможном перемещении, при котором изменяется только обобщенная координата .

Например, для точки на рис. 28 обобщенные силы, соответствующие координатам x и y можно найти по формулам:

,

.

 

 

 

ЗАДАЧИ К КОНТРОЛЬНЫМ ЗАДАНИЯМ

Задача Д1

Груз D массой m, получив в точке А начальную скорость υ 0, движется в изогнутой трубе ABC, расположенной в вертикальной плоскости; участки трубы или оба наклонные, или один горизонтальный, а другой наклонный (рис. Д1.0 – Д1.9, табл. Д1). На участке АВ, на груз кроме силы тяжести, действуют постоянная сила (ее направление показано на рисунках) и сила сопротивления среды , зависящая от скорости груза (направлена против движения); трением груза о трубу на участке АВ пренебречь.

В точке В груз, не изменяя своей скорости, переходит на участок ВС трубы, где на него, кроме силы тяжести, действуют сила трения (коэффициент трения груза о трубу f = 0, 2) и переменная сила , проекция которой Fx на ось х задана в таблице. Считая груз материальной точкой и зная расстояние АВ = l или время t1 движения груза от точки А до точки В, найти закон движения груза на участке ВС, т. е. x = f(t), где x = BD.

Указания.Задача Д1 – на интегрирование дифференциальных уравнений движения точки. (Решение основной задачи механики). Решение задачи разбивается на две части. Сначала нужно составить и проинтегрировать методом разделения переменных дифференциальное уравнение движения точки (груза) на участке AB, учтя начальные условия. Затем, зная время движения груза на участке АВ или длину этого участка, определить скорость груза в точке В. Эта скорость будет начальной для движения груза на участке ВС. После этого нужно составить и проинтегрировать дифференциальное уравнение движения груза на участке ВС тоже с учетом начальных условий, ведя отсчет времени от момента, когда груз находится в точке В, и полагая в этот момент t=0. При интегрировании уравнения движения на участке АВ в случае, когда задана длина l участка, целесообразно перейти к переменной х, учтя, что:

Таблица Д1

Номер условия m, кг υ 0, м/с Q, H R, H l, м t, c Fx, H
0, 4υ - 2, 5 2sin(4t)
2, 4 0, 8 υ 2 1, 5 - 6t
4, 5 0, 5 υ - 3sin(2t)
0, 6 υ 2 - -3cos(2t)
1, 6 0, 4 υ - 4cos(4t)
0, 5 υ 2 - -6sin(2t)
1, 8 0, 3 υ - 9t2
0, 8 υ 2 2, 5 - -8cos(4t)
0, 5 υ - 2cos(2t)
4, 8 0, 2 υ 2 - -6sin(4t)

Пример Д1. На вертикальном участке АВ трубы (рис. Д1) на груз D массой m действует сила тяжести и сила сопротивления ; движение от точки А, где υ 0=0, до точки В длится t1 c. На наклонном участке ВС на груз действуют сила трения (коэффициент трения груза о трубу равен f) и переменная сила F=F(t), заданная в ньютонах.

Дано: m=8кг, R=μ υ 2, где μ =0, 2 кг/м, υ 0=0, t1=2c, f=0.2, Fx=16 sin (4t), α =30˚.

Определить: x=f(t) – закон движения груза на участке ВС.

Решение.1. Рассмотрим движение груза на участке АВ, считая груз материальной точкой. Изображаем груз (в произвольном положении) и действующие на него силы . Проводим ось Аz и составляем дифференциальное уравнение движения груза в проекции на эту ось:

(1)

Далее находим Pz=P=mg, Rz=-R=-μ υ 2; подчеркиваем, что в уравнении все переменные силы надо обязательно выразить через величины, от которых они зависят. Учтя еще, что υ z=υ, получим

(2)

Введем для сокращения записей обозначение

(3)

где при подсчете принято g≈ 10 м/с2. Тогда, разделяя в уравнении (2) переменные и взяв затем от обеих частей равенства интегралы, получим

(4)

По начальным условиям при t = 0 υ =υ 0=0, что дает С1=(1/2n)× ln1=0. Введя еще одно обозначение

(5)

получим из (4)

Отсюда находим, что

(6)

Полагая здесь t=t1=2 c и заменяя n и k их значениями (3) и (5), определим скорость υ В груза в точке В (число е=2, 7):

(7)

2. Рассмотрим движение груза на участке ВС; найденная скорость υ В будет для движения на этом участке начальной скоростью (υ 0= υ В). Изображаем груз (в произвольном положении) и действующие на него силы Проведем из точки В оси Вх и Ву и составим дифференциальное уравнение движения груза в проекции на ось Вх:

или

(8)

где FТР=fN. Для определения N составим уравнение в проекции на ось Вy. Так как ау=0, получим 0=N-mgcosα, откуда N=mgcosα. Следовательно, Fтр=fmgcosα; кроме того, Fx=16sin(4t) и управление (8) примет вид

(9)

Разделив обе части равенства на m, вычислим

g(sinα – f cos α )=g(sin30˚ -0, 2cos30˚ )=3, 2; 16/m=2 и поставим эти значения в (9). Тогда получим

(10)

Умножая обе части уравнения (10) на dt и интегрируя, найдем

(11)

Будем теперь отсчитывать время от момента, когда груз находится в точке В, считая в этот момент t=0. Тогда при t=0 υ =υ 0В, где υ В дается равенством (7). Подставляя эти величины в (11), получим

При найденном значении С2 уравнение (11) дает

(12)

Умножая здесь обе части на dt и снова интегрируя, найдем

x=1, 6t2-0.13sin(4t)+15, 7t+C3. (13)

Так как при t=0 x=0, то C3=0 и окончательно искомый закон движения груза будет

(14)

где x – в метрах, t – в секундах.


Задача Д4

Механическая система состоит из грузов 1 и 2, ступенчатого шкива 3 с радиусами ступеней R3 = 0, 3 м, r3 = 0, 1 м и радиусом инерции относительно оси вращения ρ 3 = 0, 2м, блока 4 радиуса R4 = 0, 2 м и катка (или подвижного блока) 5 (рис. Д4.0 – Д4.9, табл. Д4); тело 5 считать сплошным однородным цилиндром, а массу блока 4 – равномерно распределенной по ободу. Коэффициент трения грузов о плоскость f = 0, 1. Тела системы соединены друг с другом нитями, перекинутыми через блоки и намотанными на шкив 3 (или на шкив и каток); участки нитей параллельны соответствующим плоскостям. К одному из тел прикреплена пружина с коэффициентом жесткости с.

Под действием силы F = f(s), зависящей от перемещения s точки ее приложения, система приходит в движение из состояния покоя; деформация пружины в момент начала движения равна нулю. При движении на шкив 3 действует постоянный момент М сил сопротивления (от трения в подшипниках).

Определить значение искомой величины в тот момент времени, когда перемещение s станет равным s1 = 0, 2 м. Искомая величина указана в столбце «Найти» таблицы, где обозначено: υ 1, υ 2, υ с5 – скорости грузов 1, 2 и центра масс тела 5 соответственно, ω 3 и ω 4 – угловые скорости тел 3 и 4.

Все катки, включая и катки, обмотанные нитями (как, например, каток 5 на рис. 1), катятся по плоскостям без скольжения.

На всех рисунках не изображать груз 2, если m2=0; остальные тела должны изображаться и тогда, когда их масса равна нулю.

Указания. Задача Д4 – на применение теоремы об изменении кинетической энергии системы. При решении задачи учесть, что кинетическая энергия Т системы равна сумме кинетических энергий всех входящих в систему тел; эту энергию нужно выразить через ту скорость (линейную или угловую), которую в задаче надо определить. При вычислении Т для установления зависимости между скоростями точек тела, движущегося плоскопараллельно, или между его угловой скоростью и скоростью центра масс воспользоваться мгновенным центром скоростей (кинематика). При вычислении работы надо все перемещения выразить через заданное перемещение s1, учтя, что зависимость между перемещениями здесь будет такой же, как между соответствующими скоростями.

Таблица Д4

Номер условия m1, кг m2, кг m3, кг m4, кг m5, кг с, Н/м М, Н× м F=f(s), H Найти
1, 2 80(4+5s) ω 3
0, 8 50(8+3s) υ 1
1, 4 60(6+5s) υ 2
1, 8 80(5+6s) ω 4
1, 2 40(9+4s) υ 1
1, 6 50(7+8s) υ С5
0, 8 40(8+9s) ω 3
1, 5 60(8+5s) υ 2
1, 4 50(9+2s) ω 4
1, 6 80(6+7s) υ С5

 

Пример Д4. Механическая система (рис. Д4, а) состоит из сплошного однородного цилиндрического катка 1, подвижного блока 2, ступенчатого шкива 3 с радиусами ступеней R3 и r3 и радиусом инерции относительно оси вращения ρ 3, блока 4 и груза 5(коэффициент трения груза о плоскость равен f). Тела системы соединены нитями, намотанными на шкив 3. К центру Е блока 2 прикреплена пружина с коэффициентом жесткости с; ее начальная деформация равна нулю. Система приходит в движение из состояния покоя под действием силы F=f(s), зависящей от перемещения s точки ее приложения. На шкив 3 при движении действует постоянный момент М сил сопротивления.

Дано: m1 = 8 кг, m2 = 0, m3 = 4 кг, m4 = 0, m5 =10 кг, R3 = 0, 3 м, r3 = 0, 1 м,

ρ 3 = 0, 2 м, f=0, 1, c=240 Н/м, M=0, 6 Н× м, F=20(3+2s)Н, s1=0, 2 м.

Определить ω 3 в тот момент времени, когда s=s1.

Решение.1. Рассмотрим движение неизменяемой механической системы, состоящей из весомых тел 1, 3, 5 и невесомых тел 2, 4, соединенных нитями. Изобразим действующие на систему внешние силы: активные реакции , натяжение нити , силы трения и момент М.

Для определения ω 3 воспользуемся теоремой об изменении кинетической энергии:

(1)

2. Определяем Т0 и Т. Так как в начальный момент система находилась в покое, то Т0=0. Величина Т равна сумме энергий всех тел системы:

. (2)

Учитывая, что тело 1 движется плоскопараллельно, тело 5 – поступательно, а тело 3 вращается вокруг неподвижной оси, получим

(3)

Все входящие сюда скорости надо выразить через искомую ω 3. Для этого предварительно заметим, что υ С15А, где А – любая точка обода радиуса r3 и что точка К1 – мгновенный центр скоростей катка 1, радиус которого обозначим r1. Тогда

(4)

Кроме того, входящие в (3) моменты инерции имеют значения

(5)

Подставив все величины (4) и (5) в равенства (3), а затем, используя равенство (2), получим окончательно

(6)

3. Теперь найдем сумму работ всех действующих внешних сил при том перемещении, которое будет иметь система, когда точка С1 пройдет путь s1. Введя обозначения: s5 – перемещение груза 5 (s5=s1), φ 3 – угол поворота шкива 3, λ 0 и λ 1 – начальное и конечное удлинения пружины, получим

;

;

;

Работы остальных сил равны нулю, так как точки К1 и К2, где приложены силы - мгновенные центры скоростей; точки, где приложены - неподвижны; а реакция перпендикулярна перемещению груза.

По условиям задачи λ 0=0. Тогда λ 1=sЕ, где sЕ – перемещение точки Е (конца пружины). Величины sE и φ 3 надо выразить через заданное перемещение s1; для этого учтем, что зависимость между перемещениями здесь такая же, как и между соответствующими скоростями. Тогда, поскольку ω 3А/r3C1 /r3 (равенство υ С1А уже отмечалось), то и φ 3=s1/r3.

Далее, из рисунка Д4, б видно, что υ DB3R3, а так как точка К2 является мгновенным центром скоростей для блока 2 (он как бы «катится по участку нити K2L), то υ Е=0, 5υ D=0, 5ω 3R3, следовательно, и λ 1=sE=0, 5φ 3R3=0, 5s1R3/r3. При найденных значениях φ 3 и λ 1 для суммы всех вычисленных работ получим

(7)

Подставляя выражения (6) и (7) в уравнение (1) и учитывая, что Т0=0, придем к равенству

(8)

Из равенства (8), подставив в него числовые значения заданных величин, найдем искомую угловую скорость ω 3. Ответ: ω 3=8, 1с-1.

Рис.Д4


Задача Д9

Механизм, расположенный в горизонтальной плоскости, находится под действием приложенных сил в равновесии; положение равновесия определяется углами a, b, g, j, q (рис. Д9.0 – Д9.9, табл. Д9а и Д9б). Длины стержней механизма (кривошипов) равны: l1 = 0, 4 м, l4 = 0, 6 м (размеры l2 и l3 произвольны); точка Е находится в середине соответствующего стержня.

На ползун В механизма действует сила упругости пружины ; численно F = сl, где с — коэффициент жесткости пружины, l — ее деформация. Кроме того, на рис. Д9.0 и Д9.1 на ползун D действует си­ла , а на кривошип 01А — пара сил с моментом М; на рис. Д9.2—Д9.9 на кривошипы 01А и 02D действуют пары сил с моментами М1 и М2.

Определить, чему равна при равновесии деформация l пружи­ны, и указать, растянута пружина или сжата. Значения всех за­данных величин приведены в табл. Д9а для рис. Д9.0—Д9.4 и в табл. Д9б для рис. Д9.5—Д9.9, где Q выражено в ньютонах, а М, М1, М2 — в ньютон-метрах.

Построение чертежа начинать со стержня, направление которо­го определяется углом α; для большей наглядности ползун с направ­ляющими и пружину изобразить так, как в примере Д9 (см. рис. Д9, а также рис. Д9.10б). Если на чертеже решаемого варианта задачи прикрепленный к ползуну В стержень окажется совмещен­ным с пружиной (как на рис. Д9.10а), то пружину следует счи­тать прикрепленной к ползуну с другой стороны (как на рис. Д9.10б, где одновременно иначе изображены направляющие).

Указания. Задача Д9 — на определение условий равновесия механической системы с помощью принципа возможных перемещений. Механизм в рассматриваемой задаче имеет одну степень свободы, т. е. одно независимое возможное перемещение. Для решения зада­чи нужно сообщить механизму возможное перемещение, вычислить сумму элементарных работ всех действующих активных сил и пар на этом перемещении и приравнять ее к нулю. Все вошедшие в сос­тавленное уравнение возможные перемещения следует выразить через какое-нибудь одно.

Чтобы найти l, надо из полученного условия равновесия опре­делить силу упругости F. На чертеже эту силу можно направить в любую сторону

(т. е. считать пружину или растянутой или сжа­той); верно ли выбрано направление силы, укажет знак.

Таблица Д9а (к рис. Д9.0—Д9.4)

Номер усло­вия     Углы, град с, Н/см     Для рис. 0—1 Для рис.2 - 4
α β g j q М, Н∙ м Q, Н М1, Н∙ м M2, Н∙ м

 

Таблица Д9б (к рис. Д9.5—Д9.9)

Номер усло­вия Углы, град с, Н/см М1, Н∙ м M2, Н∙ м
α β g j q

 

 


 

Пример Д9. Механизм (рис. Д9а), расположенный в горизонтальной плоскости, состоит из стержней 1, 2, 3 и ползунов B, D, соединенных друг с другом и с неподвижной опорой О1 шарнирами.

К ползуну В прикреплена пружина с коэффициентом жёсткости с, к ползуну D приложена сила , а к стержню 1 (кривошипу) — пара сил с моментом М.

Дано: α = 60 °, β = 0 °, γ = 60 °, φ = 0 °, θ = 120 °, l = 0, 4 м, АЕ = ЕD,

с= 125 Н/см, М = 150 Н× м, Q = 350 Н.

О п р е д е л и т ь: деформацию λ пружины при равновесии механизма.

Решение. 1. Строим положение механизма в соответствии с за­данными углами (рис. Д9б); при этом согласно последнему из указаний к задаче Д9 прикрепляем пружину к ползуну с другой стороны (так, как если бы было β = 180°).

Для решения задачи воспользуемся принципом возможных перемещений, согласно которому

(1)

где δ Ak — элементарные работы активных сил на соответствующих возможных перемещениях.

Изображаем действующие на механизм активные силы: силу , силу упругости пружины (предполагая, что пружина растя­нута) и пару сил с моментом М.

Неизвестную силу F найдем с помощью уравнения (1), а зная F и учитывая, что F = cλ, определим λ.

2. Чтобы составить уравнение (1), сообщим механизму возмож­ное перемещение и введем следующие обозначения для перемеще­ний звеньев, к которым приложены активные силы: δ φ 1 — поворот стержня 1 вокруг оси О1, δ sD и δ sB — перемещения ползунов (то­чек) D и В.

Из перемещений δ φ 1, δ sD, δ sB независимое от других — одно (у механизма одна степень свободы). Примем за независимое воз­можное перемещение δ φ 1 и установим, какими тогда будут δ sD и δ sB, выразив их через δ φ 1; при этом важно верно определить и направления δ sD, δ sB, так как иначе в уравнении (1) будут ошибки в знаках.

При расчетах учтем, что зависимость между возможными перемещениями здесь такая же, как между соответствующими ско­ростями звеньев механизма при его движении и воспользуемся из­вестными из кинематики соотношениями (ход расчетов такой же, как в примере КЗ).

Сначала найдем и изобразим δ sA (направление δ sA определя­ется направлением δ φ 1); получим

(2)

Теперь определим и изобразим δ sD, учитывая, что проекции δ sD и δ sA на прямую АD должны быть равны друг другу (иметь одинаковые модули и знаки). Тогда

(3)

Чтобы определить δ sB, найдем сначала δ sE. Для этого построим мгновенный центр вращения (скоростей) С2 стержня 2 (на пересе­чении перпендикуляров к δ sA и δ sD, восстановленных из точек А и D) и покажем направление поворота стержня 2 вокруг С2, учтя направление δ sA или δ sD. Так как Ð С2АD = Ð C2DА = 60°, то DАС2D равносторонний и С2Е в нем высота, поскольку АЕ = ЕD. Тогда перемещение δ sE, перпендикулярное С2Е, будет направлено по прямой ЕА (при изображении δ sE учитываем направление пово­рота вокруг центра С2).

Воспользовавшись тем, что проекции δ sE и δ sA на пря­мую ЕА должны быть равны друг другу, получим (значение δ sE можно найти и составив соответствующую пропорцию)

(4)

Наконец, из условия равенства проекций δ sB и δ sE на прямую ВЕ находим и изображаем δ sB. Численно

δ sB = δ sE соs 60° = l1 δ φ 1соs 30° • соs60° = 0, 43l1 δ φ 1. (5)

3. Теперь составляем для механизма уравнение (1); получим

(6)

или, заменяя здесь δ sD и δ sB их значениями (3) и (5) и вынося одновременно δ φ 1 за скобки,

(7)

Так как δ φ 1¹ 0, то отсюда следует, что

(8)

Из уравнения (8) находим значение F и определяем λ = F/с. Ответ: λ = 13, 5 см. Знак указывает, что пружина, как и предпо­лагалось, растянута.

 

 


Задача Д10

Механическая система состоит из однородных ступенчатых шки­вов 1 и 2, обмотанных нитями, грузов 3—6, прикрепленных к этим нитям, и невесомого блока (рис. Д10.0—Д10.9, табл. Д10). Систе­ма движется в вертикальной плоскости под действием сил тяжести и пары сил с моментом М, приложенной к одному из шкивов. Ра­диусы ступеней шкива 1 равны:

R1 = 0, 2 м, r1 = 0, 1 м, а шкива 2 - R2 = 0, 3 м, r2 = 0, 15 м; их радиусы инерции относительно осей вра­щения равны соответственно ρ 1=0, 1 м и ρ 2=0, 2 м. Пренебрегая трением, определить ускорение груза, имеющего больший вес; веса Р1, ..., Р6 шкивов и грузов заданы в таблице в ньютонах. Грузы, веса которых равны нулю, на чертеже не изобра­жать (шкивы 1, 2 изображать всегда как части системы).

Указания.Задача Д10 – на применение (к изучению движения системы) общего уравнения динамики (принципа Даламбера – Лагранжа). Ход решения задачи такой же, как в задаче Д9, только предварительно надо присоединить к действующим на систему си­лам соответствующие силы инерции. Учесть при этом, что для од­нородного тела, вращающегося вокруг своей оси симметрии (шки­ва), система сил инерции приводится к паре с моментом Ми = Jzε , где Jz – момент инерции тела относительно оси вращения, ε – угловое ускорение тела; направление Ми противоположно направлению ε.

Таблица Д10

Номер условия P1 P2 P3 P4 P5 P6 M, H× м
0, 9
1, 2
0, 6
1, 8
1, 2
0, 9
1, 8
0, 6
0, 9
1, 2

 

ПримерД10. Механическая система (рис. Д10) состоит из обмотанных нитями блока 1 радиуса R1 и ступенчатого шкива 2 (радиусы ступеней R2 и r2, радиус инерции относительно оси вращения ρ 2), а также из грузов 3 и 4, прикрепленных к этим нитям. Система движется в вертикальной плоскости под действием сил тяжести и пары сил с моментом М, приложенной к блоку 1.

Дано: P1=0, P2 = 30 H, P3 = 40 H, P4 = 20 H, M = 16 H× м, R1 = 0, 2 м, R2 = 0, 3 м, r2 = 0, 15 м, ρ 2 = 0, 2 м.

Определить ускорение груза 3, пренебрегая трением.

Решение. 1. Рассмотрим движение механической системы, состоящей из тел 1, 2, 3, 4, соединенных нитями. Система имеет одну степень свободы. Связи, наложенные на эту систему, - идеальные.

Для определения а3 применим общее уравнение динамики:

(1)

где - сумма элементарных работ активных сил; - сумма элементарных работ сил инерции.

2. Изображаем на чертеже активные силы , и пару сил с моментом М. Задавшись, направлением ускорения , изображаем на чертеже силы инерции и пару сил инерции с моментом , величины которых равны:

(2)

3. Сообщая системе возможное перемещение и составляя уравнение (1), получим

(3)

Выразим все перемещения через

(4)

Подставив величины (2) и (4) в уравнение (3), приведем его к виду

(5)

Входящие сюда величины ε 2 и а4 выразим через искомую величину а3:

Затем, учтя, что δ φ 2¹ 0, принимаем равным нулю выражение, стоящее в (5) в квадратных скобках.

Из полученного в результате уравнения найдем

Вычисления дают следующий о т в е т: а3 = - 0, 9 м/с2. Знак указывает, что ускорения груза 3 и других тел направлены противоположно показанным на рис. Д10.

 

 

Список рекомендуемых источников

Основная литература

1. Бать М.И., Теоретическая механика в примерах и задачах./ М.И. Бать, Г.Ю. Джапаридзе, А.С. Кельзон. - Т. 1, 2. — М., 1964 [и последующие издания].

2. К


Поделиться:



Последнее изменение этой страницы: 2017-05-11; Просмотров: 1186; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.14 с.)
Главная | Случайная страница | Обратная связь